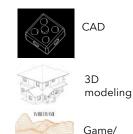
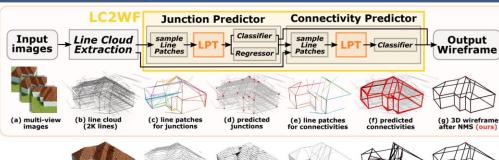
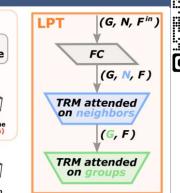


Learning to Construct 3D Building Wireframes from 3D Line Clouds



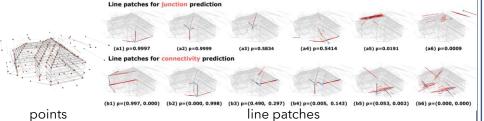
Yicheng Luo^{1,2}, Jing Ren^{1,3}, Xuefei Zhe¹, Di Kang¹, Yajing Xu², Peter Wonka⁴, Linchao Bao¹ ¹Tencent AI Lab, ²Beijing University of Posts and Telecommunications, ³ETH Zurich, ⁴KAUST


Why Wireframe?


- Lightweight for storage and processing
- **❖ Clean** geometry representation
- High-level structuralized features

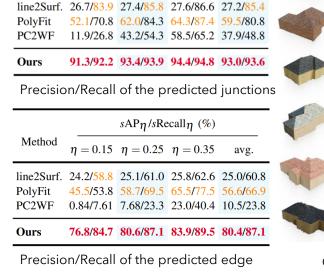
Animation

4. Methodology - LC2WF: line cloud → wireframe **Junction Predictor** sample Line – Patches Line Cloud Extraction

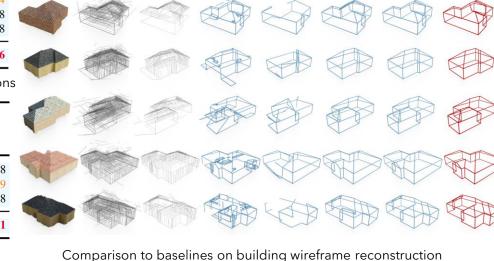

2. Contributions

- ❖ A novel **learning-based** solution to reconstruct **3D building** wireframe from Multiview images
- **LC2WF**: a transformer-based and first network to process line clouds based on line patches
- ❖ An adapted synthetic *dataset* with annotated multi-view images and ground-truth 3D wireframe models

3. Line Patches


Line patch: a group of line segments that encode local geometry

- ❖ Sample *points* w.r.t *density* and farthest point sampling
- Sample *line patch* based on distance between the sampled point and line segments


5. Baselines & Results

Method

 $vAP_n/vRecall_n$ (%)

 $\eta = 0.15$ $\eta = 0.25$ $\eta = 0.35$

