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Abstract

Natural image matting is the task of precisely estimating alpha mattes to separate
foreground objects from background images. Existing matting methods only focus on
classical closed-set problems where object categories and data distributions are similar
between training and test sets. However, in the open world setup, there exists a situation
where testing samples are drawn from a different distribution than the training data. To
handle this situation, we present the first open set matting (OSM) framework that con-
tains two networks: (1) an out-of-distribution (OOD) detection network to identify OOD
to-be-matted objects; and (2) an incremental few-shot learning matting module to en-
large the existing knowledge base of to-be-matted objects. Our OOD detection network
leverages metric-based prototype learning to be aware of unseen objects and increase
inter-class separability, utilizing intra-batch connections to enhance intra-class compact-
ness. Compared to other OOD detection methods, our network achieves state-of-the-art
performance on SIMD dataset. Further, our incremental few-shot learning matting mod-
ule improves the performance on unseen to-be-matted objects by gradually incorporating
novel classes into the existing knowledge base without catastrophic forgetting and over-
fitting.

1 Introduction
The goal of natural image matting is to estimate alpha mattes to exactly extract foreground
objects from background images. The matting problem can be formulated in a general math-
ematical manner that an image I is defined as a linear combination of alpha matte α , fore-
ground F , and background B image,

I = αF +(1−α)B, (1)

where RGB I is known, but F,B and α are unknown.
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Apart from traditional matting approaches [1, 5, 7, 13, 14, 16, 24, 25, 26, 42, 45, 49, 50],
deep learning has presented its powerful capability in matting tasks, which can be divided
into three primary categories, including background-required [36, 40], only-image input [37,
52, 60], and trimap-needed [6, 8, 28, 31, 32, 46, 47, 54]. We focus on the most popular
trimap-needed matting approaches where the trimap provides deterministic foreground, un-
known, and background regions of an image. After Cho et al. [6] introduced deep neural
networks into image matting task, Xu et al. [54] proposed a deep learning matting solution
with a comprehensive matting database, known as the Adobe Image Matting dataset (AIM).
Different from various matting works that emerged after Xu et al. work, recently, Sun et
al. [46] has identified a bias issue of previous matting datasets, such as AIM [54] and the
Distinctions-646 dataset [37]. To this end, they introduced a more balanced Semantic Image
Matting Dataset (SIMD) as well as Semantic Image Matting network (SIM). The SIMD di-
vides data into 20 different object categories according to object appearance within unknown
region of trimap. Since the emergence of SIM, properly leveraging object information into
matting task has caught researchers’ interest. Although past matting methods have shown
excellent performance in existing datasets, we notice that previous matting methods only fo-
cus on closed-set object categories whose performance can be degraded when encountering
unseen objects. Therefore, we put matting into a real-world scenario and consider it as an
open set task that is able to detect out-of-distribution (OOD) to-be-matted objects and find a
matting performance balance between in-distribution (ID) and OOD to-be-matted objects.

Annotated
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Matting Network

Seen object

Unseen object

Adaptation
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Figure 1: The overview of our open set
matting (OSM) framework. The out-of-
distribution (OOD) detection network de-
tects unseen samples whose appearance
within unknown region of trimap is un-
seen during training. After annotation of
a few unseen samples, we conduct few-
shot adaptation.

Despite well-investigated open set learn-
ing [38], especially open set recognition (OSR),
open set matting (OSM) remains an unexplored
field. OSM is significantly valuable in practice
because it makes detecting OOD to-be-matted
objects possible, which can then be annotated
by humans to obtain desirable results. How-
ever, challenges arise when dealing with OSM in
the following aspects. First, in real applications,
there can exist various kinds of matting objects
that are unseen and challenging for the mat-
ting network trained on the closed-set knowl-
edge base. Hence, identifying approaches for a
closed-world discriminative model to be aware
of unseen objects and training matting networks
to mat new objects with a few labels are worth
exploring and researching. Second, the network
could suffer from interference of complex fore-
ground and background information since it only detects whether the appearance of to-be-
matted objects within unknown region of trimaps is OOD. Hence, without enhancing the
expressiveness ability of the network, the capability of OOD detection could be degraded.

Therefore, in this paper, we propose the first open set matting framework: (1) an OOD
detection network to identify OOD to-be-matted objects; (2) an incremental few-shot learn-
ing matting module to gradually enlarge the existing knowledge base of matting objects.
To make the discriminative model trained on closed world to be unseen-aware and increase
inter-class feature separability, we leverage metric-based prototype learning to embed sam-
ples into the low-dimensional prototype space. Further, to enhance the expressiveness abil-
ity of OOD detection network on matting data, we exploit metric-based intra-batch feature
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connection to maintain intra-class feature compactness, in which “intra-batch” also means
mini-batch while emphasizing that there is connectivity between the samples [39]. With
these two carefully-designed components, our OOD detection network becomes unseen-
aware and more adaptive to the matting task. Then, we adapt the matting network that is
trained on closed-set data to unseen objects with only a few samples and without catastrophic
forgetting/over-fitting. We compare our OOD detection network with other state-of-the-art
OOD detection methods on SIMD dataset and show that our method obtains the new state-
of-the-art results. We conduct experiments and analysis to validate the effectiveness of our
few shot learning matting module.

To summarize, our contributions are as follows: (1) We propose the first open set mat-
ting (OSM) framework to tackle matting task from an open set perspective. (2) We show that
our OOD detection network achieves the new state-of-the-art performance on SIMD dataset
compared to other OOD detection methods. (3) We validate that our few-shot learning mat-
ting module can not only prevent catastrophic forgetting but also avoid over-fitting.

2 Related Work

2.1 Out-of-Distribution Detection

OOD detection can be categorized into two domains, i.e., uncertainty estimation-based and
generative model-based approaches. For generative model-based OOD detection approaches,
the network reconstruction error of ID data is smaller than that of OOD data. For uncertainty
estimation-based OOD detection approaches, the maximum softmax probability (MSP) [18]
is served as a baseline for uncertainty estimation. Hendrycks et al. [19] explore OOD
detection in large-scale multi-class and multi-label settings and introduce maximum logit
(MaxLogit) detector. However, one issue of MSP and MaxLogit is that DNNs tend to pro-
duce wrong prediction with high confidence in that DNNs are usually poorly calibrated [15].
Therefore, there are many works that aim to achieve better uncertainty estimation. For exam-
ple, Guo et al. [15] evaluate various post-processing calibration methods and provide tem-
perature scaling solution at calibrating predictions. Monte Carlo dropout (MC-dropout) [12]
and ensembles [23] approaches leverage approximate Bayesian inference to better estimate
uncertainty. Furthermore, Zaeemzadeh et al. [58] attempt to embed in-distribution data onto
a union of 1-dimensional subspaces and leverage sampling-based approximate Bayesian in-
ference for OOD detection (1D-subspaces).

2.2 Prototype Learning

Prototype learning is a deep learning counterpart of traditional nearest neighbor classifica-
tion and Learning Vector Quantization (LVQ) [22] that relates each class to its correspond-
ing prototype and conducts classification according to the distance based similarity between
samples and prototypes. Prototype learning has demonstrated excellent performance in one-
shot learning [11, 48], OOD/anomaly detection [3, 4, 55, 56], few-shot learning [35, 44, 51],
and person re-identification [57]. It aims to learn a deep feature embedding whose semantic
similarity possesses small intra-class variation but large inter-class variation. Since its goal
also matches OOD detection task that there should be large inter-class gap between OOD
data and ID data, we introduce prototype learning into our OOD detection network for open
set matting.

Citation
Citation
{Seidenschwarz, Elezi, and Leal-Taix{é}} 2021

Citation
Citation
{Hendrycks and Gimpel} 2017

Citation
Citation
{Hendrycks, Basart, Mazeika, Zou, Kwon, Mostajabi, Steinhardt, and Song} 2022

Citation
Citation
{Guo, Pleiss, Sun, and Weinberger} 2017

Citation
Citation
{Guo, Pleiss, Sun, and Weinberger} 2017

Citation
Citation
{Gal and Ghahramani} 2016

Citation
Citation
{Lakshminarayanan, Pritzel, and Blundell} 2017

Citation
Citation
{Zaeemzadeh, Bisagno, Sambugaro, Conci, Rahnavard, and Shah} 2021

Citation
Citation
{Kohonen} 1995

Citation
Citation
{Fei-Fei, Fergus, and Perona} 2006

Citation
Citation
{Vinyals, Blundell, Lillicrap, Wierstra, etprotect unhbox voidb@x protect penalty @M  {}al.} 2016

Citation
Citation
{Cen, Yun, Cai, Wang, and Liu} 2021

Citation
Citation
{Chen, Qiao, Shi, Peng, Li, Huang, Pu, and Tian} 2020

Citation
Citation
{Yang, Zhang, Yin, and Liu} 2018

Citation
Citation
{Yang, Zhang, Yin, Yang, and Liu} 2020

Citation
Citation
{Oreshkin, Rodr{í}guezprotect unhbox voidb@x protect penalty @M  {}L{ó}pez, and Lacoste} 2018

Citation
Citation
{Snell, Swersky, and Zemel} 2017

Citation
Citation
{Wang, Girshick, Hebert, and Hariharan} 2018

Citation
Citation
{Yi, Lei, Liao, and Li} 2014



4 ZHOU ET AL.: OSM

3 Approach

3.1 Problem Setup

In Fig. 1, we provide the overview of our open set matting framework. This framework
contains an OOD detection network and an incremental few-shot learning matting module.
Consider that I = {I1, I2, ..., In} are a set of images, T = {T1,T2, ...,Tn} denote corresponding
trimaps, and A= {α1,α2, ...,αn} refer to corresponding alpha mattes. The closed-set data be-
longs to N ID classes Cin = {Cin,1, ...,Cin,N} while K OOD classes, Cout = {Cout,1, ...,Cout,K},
are excluded from the closed-set data. Given Ii and Ti as input, the OOD detection net-
work produces anomalous score SIi and identify OOD images by λout thresholding, that
is, Ii ∈ Cout (denoted as Iout) if SIi > λout, otherwise Ii ∈ Cin. Then, Iout would be for-
warded to labelers who can provide the corresponding alpha matte Aout. With a few avail-
able samples of novel classes, the incremental few-shot learning matting module gradually
enlarges the knowledge base of the closed-set matting network from Cin to Cin+K where
Cin+t =Cin ∪{Cout,1,Cout,2, ...,Cout,t}, t ∈ {1,2, ...,K}.

3.2 OOD Detection Network (OOD-DN)

Deep Neural 
Network

N Prototypes

Embeded into distance features by 
calculating Euclidean Distance 

with each class prototype

Cross-entropy loss

Intra-batch 
connection loss

BxN BxN

Figure 2: Our OOD Detection Network
(OOD-DN). Our OOD-DN leverages pro-
totype learning with intra-batch connec-
tion to be unseen-aware and generate in-
formative logit features.

Fig. 2 shows our OOD detection network that
can be disentangled into a feature extractor and
a discriminant function. The ResNet-50 [17]
serves as a feature extractor f (X ;θ f ) where X
denotes the input image/trimap and θ f serves as
the parameters of feature extractor. The stan-
dard classification of DNNs is targeted to closed
world that can be unsuitable for OOD detec-
tion. Hence, in order to increase the unseen-
awareness and expressiveness of the network,
we utilize prototype learning to build up dis-
tance features on top of the feature extractor. We
calculate distances between the feature extractor
output and predefined scaled one-hot prototypes to serve as the input of the discriminant
function g(·) for classification [3, 33, 55]. Since prototypes are orthogonal to each other and
prototypes can be easily extended to novel classes, it helps to increase inter-class separability
and enable the network to be unseen-aware.

To be precise, consider all prototypes as P = {pi ∈ R1×N |i ∈ {1,2, ...,N}}, where pi =
[0, ...,m

i
, ...,0] corresponds to Cin,i. We embed the latent feature output of the network that

has the same length as the prototype into distance features by

di =−|| f (X ;θ f )− pi||22. (2)

The final input feature for the discriminant function g(·) is formed by D = {di ∈ R|i ∈
{1,2, ...,N}}. Then, for classification, we optimize f (X ;θ f ) and g(·) by minimizing the
prototype learning based cross entropy loss, LCE. LCE can be formulated as

LCE =− log
(

exp(dy)

∑
N
i=1 exp(di)

)
, (3)
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where y is the ground-truth class label of input X and dy refers to the distance feature between
f (X ;θ f ) and the prototype py. With prototype learning, we explicitly increase inter-class
separability and enable the unseen-awareness of the network. Therefore, we expect our
network to be more appropriate for OOD detection task.
Intra-Batch Connection Regularization In order to enhance the intra-class compactness
and fully exploit data information we have, we leverage intra-batch connectivity, that is,
for samples with the same label, their latent distance distributions should be similar while,
for samples with different labels, their latent distance distributions should be distinguished.
Therefore, we minimize Kullback-Leibler divergence between latent distance distributions
of each pair of intra-batch samples that have the same class label over a total of N ID classes.
The intra-batch connection loss LIBC is defined as

LIBC =
N

∑
i=1

Ci

∑
j=1, j<k

DKL(D
( j)
Ci
||D(k)

Ci
), DKL(p||q) =

N

∑
i=1

pi log
(

pi

qi

)
, (4)

where D(m)
Ci

= softmax([d1,d2, ...,dN ]) and Ci represents a cluster of samples that have the
same label i.
OOD Detection During Inference Since the partition function constrains features to seen
data and ignores unseen data, we use the negative maximum value of logit output D as the
anomalous score for OOD detection without partition during inference [19]. Specifically,
given input X , the anomalous score is defined as

S( f (X ;θ f )) =−max(di), i ∈ {1,2, ...,N}. (5)

3.3 Incremental Few-Shot Learning Matting Module (IFL-MM)

The detected OOD to-be-matted images can then be delivered to labelers for annotation.
We aim to enlarge the existing knowledge base of matting network to embrace novel classes
without introducing external parameters and catastrophic forgetting under the situation where
only a few labels are available. Thus, we introduce incremental few-shot learning matting
module (IFL-MM) by (1) Train the matting network on 15-class ID data as the pre-trained
model G; (2) Adapt the pre-trained model G to OOD domain with a few labels as the adapted
model G′.

To illustrate our IFL-MM, we adopt U-Net architecture [28] as matting network. Con-
sidering the pre-trained matting network function G(X ;θ) where θ is model parameters
and X denotes input image and its corresponding trimap, we can obtain the estimated alpha
matte α̂ = G(X ;θ). To improve OOD matting performance, first, we show that adapting
the weights of matting network from ID domain to OOD domain directly by fine-tuning
is inefficient since OOD data follows a different distribution than ID data and remodelling
the statistics of Batch Normalization with exponential learning rate decay schedule can ef-
fectively handle this problem. Second, we quantify the importance of weights of matting
network in ID domain for weight regularization of OOD data adaptation since a direct adap-
tation without regularization leads to over-fitting and knowledge forgetting.
Remodelling the Statistics of Batch Normalization with Exponential Learning Rate De-
cay In practice, we found that directly fine-tuning the pre-trained model on novel samples
results in slow convergence and unstable training. It is due to the fact that (1) the traits of
past data dominate over the statistics of Batch Normalization (BN) [20]; (2) the training can
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be ill-conditioned if the feature transformation does not satisfy the condition of transform-
ing inputs to be zero-mean, unit-variance, and uncorrelated [34, 53]; (3) when the existing
knowledge base encounters novel samples, a non i.i.d. mini-batch situation arises and BN
can fail.

Therefore, we propose to remodel the BN statistics with exponential learning rate decay
to alleviate this issue. First, we are inspired from domain adaptation techniques, especially
Adaptive Batch Normalization that recalculates the batch-wise mean and variance of BN
at different layers of the network over the whole target domain before inference [27]. We
reset the mean (resp. variance) of each BN of the pre-trained model to zero (resp. one)
before fine-tuning. Upon resetting BN statistics and remodelling BN statistics as the running
mean and variance over novel samples, we, to some extent, circumvent an non i.i.d. mini-
batch situation and enable the network to obtain efficient adaptation ability. Second, to avoid
unstable training, we exponentially decrease the learning rate η̂ with respect to training
iteration t, η̂ = η0 ∗γ t , where the initial learning rate η0 is 0.01 and γ is the hyperparameter.
The η̂ will become 0.0001 after 3,000 iterations.
Weight Constrain by Synaptic Intelligence We argue that constraining the previous im-
portant model parameters can not only prevent over-fitting to limited samples but also avoid
training collapse and divergence according to the following two reasons: (1) the direct fine-
tuning without any regularization results in not only slow convergence but also over-fitting
and catastrophic forgetting; (2) a matting network trained on ID data, different from well-
investigated few-shot classification, can also be directly applied on OOD data although it
turns out to be less accurate.

Elastic Weight Consolidation (EWC) [21] is a regularization technique that aims to over-
come catastrophic forgetting by constraining the model parameters according to their impor-
tance for previous tasks. It uses Fisher information F to tell how much the model parameters
θi commit to the observations. It can be achieved by adding an additional regularization
term to the loss function when doing adaptation. Synaptic Intelligence (SI) [59] is a EWC
simplified variant where F is calculated online by integrating the loss over the weight tra-
jectories during gradient descent. We simplify the importance calculation by considering it
as the expectation of the square of the partial derivative of the log-likelihood function with
respect to θi. We minimize

L = |α − α̂|+ λ

2
·∑

i
Fi · (θi −θ

∗
i )

2, Fi = E

[(
∂

∂θi
L(α|X ;θ)

)2
]
, (6)

where L(α|X ;θ) is the log-likelihood function of previous tasks.

4 Experiments

4.1 OOD Detection Network (OOD-DN)
Datasets We conduct experiments on Semantic Image Matting Dataset (SIMD) that contains
20 classes with 726 training foregrounds and 89 testing foregrounds. To have a similar setup
as Shaban et al. [41], we consider 5 classes, i.e., glass_ice, fire, water_drop, spider_web,
and water_spray, out of 20 classes as OOD data and exclude these 5 classes from training
set. During training, as commonly used with the SIMD dataset [46], we randomly composite
training foregrounds with randomly selected background images from COCO [29]. For the
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Methods AUROC(IN)↑ AUPR(IN)↑ FPR95(IN)↓ AUROC(OUT)↑ AUPR(OUT)↑ FPR95(OUT)↓ DetectionError↓
MSP [18] 0.673 0.879 0.882 0.673 0.360 0.621 0.332
MaxLogit [19] 0.623 0.855 0.959 0.623 0.290 0.740 0.363
EnergyScore [30] 0.605 0.847 0.995 0.605 0.278 0.751 0.363
1-D Subspaces [58] 0.734 0.896 0.795 0.734 0.501 0.722 0.322
MMSP [3] 0.660 0.864 0.941 0.660 0.328 0.837 0.360
EDS [3] 0.630 0.810 0.959 0.630 0.319 1.000 0.367

OOD-DN (Ours) 0.819 0.940 0.791 0.819 0.541 0.413 0.230

Table 1: OOD detection results on SIMD dataset.

λ PL LCE LIBC MSP MaxLogit AUROC(IN)↑ AUPR(IN)↑ FPR95(IN)↓ AUROC(OUT)↑ AUPR(OUT)↑ FPR95(OUT)↓ DetectionError↓
✓ ✓ ✓ 0.315 0.663 0.996 0.315 0.183 0.964 0.485
✓ ✓ ✓ 0.664 0.857 0.841 0.664 0.353 0.722 0.349

λ = 0.1

✓ ✓ ✓ 0.589 0.807 0.945 0.589 0.293 0.919 0.406
✓ ✓ ✓ 0.717 0.891 0.850 0.717 0.414 0.703 0.328

✓ ✓ ✓ ✓ 0.493 0.738 0.955 0.493 0.247 0.979 0.464
✓ ✓ ✓ ✓ 0.819 0.940 0.791 0.819 0.541 0.413 0.230

λ = 1.0

✓ ✓ ✓ 0.763 0.917 0.923 0.763 0.431 0.576 0.283
✓ ✓ ✓ 0.752 0.917 0.950 0.752 0.390 0.558 0.279

✓ ✓ ✓ ✓ 0.547 0.791 0.914 0.547 0.308 0.891 0.445
✓ ✓ ✓ ✓ 0.743 0.876 0.655 0.743 0.573 0.848 0.287

Table 2: Ablation study results of our OOD detection network on SIMD dataset. PL refers
to prototype learning.

test set, we follow Sun et al. [46] to synthesize 890 images that consist of 15 ID and 5
OOD classes. We also composite each SIMD training foreground with 10 randomly selected
background images from COCO to synthesize 7,260 images as toy samples (denoted as
Toy SIMD dataset). See additional results of another different OOD-ID split setting in the
supplementary material.
Evaluation Metrics We evaluate OOD detection performance using the following metrics:
(1) AUROC(IN): The area under the receiver operating characteristic; (2) AUPR(IN): The
area under the precision-recall curve; (3) FPR95(IN): The false positive rate at 95% true
positive rate; (4) AUROC(OUT); (5) AUPR(OUT); (6) FPR95(OUT); (7) Detection Error
that indicates the minimum misclassification probability. Metrics suffixed by (IN) are calcu-
lated when ID data is treated as positive. Opposite to (IN), metrics suffixed by (OUT) are
calculated when OOD data is treated as positive.
Implementation Details We follow similar data processing and augmentation procedure
as GCA-Matting [28] to generate random trimaps and augmented images. We randomly
crop square patches from the unknown region of composited images and then resize them
to 320× 320 patches. The network is trained for 50,000 iterations with 20 batch size. The
Adam optimizer with β1 = 0.5 and β2 = 0.999 is adopted with initialized learning rate, 0.01,
plus warm-up and cosine decay techniques. The hyperparameter of LIBC, λ is set to 0.1 and
m is 3.
Results We compare our OOD-DN results with MSP [18], MaxLogit [19], energy score [30],
1D-subspaces1 [58], metric-based maximum softmax probability (MMSP) [3], and Euclidean
distance sum (EDS) [3]. We reproduce these methods according to their official public avail-
able code under the same training configuration as ours. In Table 1, we present the quantitive
comparison. The results show that our OOD-DN achieves the state-of-the-art performance in
all OOD detection related metrics. Compared to the state-of-the-art 1D-subspaces, our OOD-
DN outperforms it with a relevantly big margin especially in AUROC(IN), AUROC(OUT),

1For 1D-subspaces, the first singular vector of each class is calculated by using the extracted features from Toy
SIMD dataset of the corresponding class.
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Methods SAD(IN)↓ MSE(IN)↓ Grad(IN)↓ Conn(IN)↓ SAD(OUT)↓ MSE(OUT)↓ Grad(OUT)↓ Conn(OUT)↓
Pre-trained 33.71 9.7 18.62 29.99 79.47 16.2 51.44 77.47
Finetune 154.07±17.45 146.2±23.0 124.52±9.68 161.36±17.52 147.46±9.86 72.9±7.2 144.12±20.07 149.82±10.54
IFL-MM (Ours) 44.87±5.13 17.8±4.8 24.17±2.40 43.74±5.86 68.08±3.56 14.8±1.1 44.41±3.34 63.35±4.22
OSM (Ours) 37.22±2.54 13.41±2.73 20.60±1.76 35.06±3.06 70.78±3.84 14.73±1.05 46.64±2.80 66.93±4.40

Table 3: Matting results on SIMD dataset.

Classes defocus fur hair_easy hair_hard insect motion net flower leaf tree
Pre-trained 12.75 8.02 6.98 10.90 120.34 4.73 75.15 49.75 34.27 70.25
Finetune 183.11 36.02 41.19 53.51 278.94 25.45 267.20 204.39 187.52 310.73
IFL-MM (Ours) 55.74 9.53 8.74 12.54 103.27 6.15 103.04 64.84 37.70 95.01
OSM (Ours) 44.95 8.62 7.32 11.44 90.42 5.37 85.12 57.63 33.99 76.33
Classes plastic_bag sharp smoke_cloud lace silk glass_ice fire water_drop spider_web water_spray
Pre-trained 32.09 2.43 28.78 75.07 60.65 92.00 80.63 40.60 162.78 46.88
Finetune 295.79 26.54 263.50 470.61 231.77 219.07 127.99 70.19 234.73 104.76
IFL-MM (Ours) 85.82 2.67 53.39 106.31 84.32 89.35 69.18 30.20 128.80 39.58
OSM (Ours) 42.47 2.61 33.42 92.41 77.96 89.08 79.21 31.31 133.16 38.18

Table 4: Detailed quantitive matting results of 20 classes of SIMD dataset on SAD metric.
Bolden classes are OOD classes, otherwise classes are ID classes.

Reg ExpDecay RemodelBN SAD(IN)↓ MSE(IN)↓ Grad(IN)↓ Conn(IN)↓ SAD(OUT)↓ MSE(OUT)↓ Grad(OUT)↓ Conn(OUT)↓
✓ ✓ 43.89 16.0 24.27 42.54 69.64 14.8 44.37 65.34
✓ ✓ 47.65 18.9 25.23 46.56 69.25 15.5 46.66 64.98

✓ ✓ 153.54 142.4 118.98 160.43 149.15 74.5 141.17 151.24
✓ ✓ ✓ 44.87 17.8 24.17 43.74 68.08 14.8 44.41 63.35

Table 5: Ablation study results of our incremental few-shot learning matting module on
SIMD dataset. Note that Reg is the regularization term based on Elastic Weight Consolida-
tion (EWC).

FPR95(OUT), and Detection Error metrics. Besides, our OOD-DN does not require a time-
consuming sampling procedure like 1D-subspaces.
Ablation Study We present ablation experimental results of our OOD-DN to study the ef-
fect of different hyperparameters of LIBC, loss functions, and OOD inference strategies, as
shown in Table 2. We can see that when prototype learning (PL) incorporates with intra-batch
connection regularization, the network can produce informative logit features for OOD de-
tection, thus showing the effectiveness of MaxLogit. Furthermore, the ablation study shows
that, by utilizing either PL or LIBC, the network can improve most of OOD detection metrics
compared to baselines, which demonstrates the superiority of our OOD-DN.

4.2 Incremental Few-Shot Learning Matting Module (IFL-MM)

Datasets In the initial training stage, we utilize 15-class ID data of SIMD training set as
training data. In the adaptation stage, we randomly sample 5-way 6-shot images from 5-class
OOD data of Toy SIMD dataset as training set and consider the remaining images of 5-class
OOD data of Toy SIMD dataset as validation set by excluding images whose foregrounds
are overlapped with that of training set. We leverage SIMD test set as test set.
Evaluation Metrics We use common matting evaluation metrics, i.e., Sum of Absolute Dif-
ferences (SAD), Mean Squared Error (MSE) that is ×103, Gradient error (Grad), and Con-
nectivity error (Conn), to evaluate matting performance. Metrics suffixed by (IN) (resp.
(OUT)) are calculated on ID (resp. OOD) data. We conduct few-shot adaptation exper-



ZHOU ET AL.: OSM 9

Figure 3: Visual comparison of matting results on 5 OOD classes of SIMD dataset. From the
1st row to the 5th row, glass_ice, fire, water_drop, spider_web, and water_spray. From left
to right, image, trimap, GT, Pre-trained model, Finetune, IFL-MM (Ours), and OSM (Ours).

iments 10 times and report average metrics and their corresponding standard deviations.
Implementation Details In the initial training stage, we adopt the similar training strat-
egy as GCA-Matting [28] and use Adam optimizer to train our matting network on ID data
with 20 batch size, 200,000 iterations, and 4e-4 initialized learning rate. In the adaptation
stage, we perform various data augmentation techniques before composition and random
512×512 patch cropping. Specifically, for each image, we apply random scaling, horizon-
tal flipping, rotation, and color jittering. For trimap generation, we erode and dilate alpha
matte with a random kernel size within [1,29] respectively. To extend limited data, we ran-
domly merge the foreground of another randomly selected image with the current image
foreground. The network is trained for 3,000 iterations with 20 batch size. The Adam op-
timizer with β1 = 0.9999 and β2 = 0.9999 is used with initialized learning rate, 0.01. The
exponential decay schedule of learning rate is utilized. The λ is set to 2e8.
Results We compare our IFL-MM with pre-trained and fine-tuned models. The Table 3
presents quantitive results of ID and OOD domains. The results show that our method im-
proves performance on OOD data by a big margin, especially in SAD, Grad, and Conn
metrics. Besides, unlike the fine-tuned model that nearly forgets ID data, our method suc-
cessfully alleviates catastrophic forgetting about ID data. The tremendous performance gap
between the fine-tuned model and ours demonstrates that the direct fine-tuning results in
slow convergence and inefficiency in both time and ID/OOD data performance. Further,
we present quantitive results of 20 classes on SAD metrics in Table 4. Our method outper-
forms the pre-trained model in every OOD class and surpasses the fine-tuned model in all
20 classes. Besides, we found that our IFL-MM is sensitive to datasets since the pre-trained
model can generalize well with unseen categories whose correlations are close to training
data. To better illustrate the superiority of our IFL-MM, we compare the visual matting re-
sults between baselines and ours in Fig. 3 on 5 challenging OOD classes. Our IFL-MM can
better separate target objects from background without apparent background ghost or miss-
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ing foreground details and obtain overall visual improvement compared to both pre-trained
and fine-tuned models.

Figure 4: Compari-
son of training process
among IFL-MM w/o
RemodelBN, IFL-MM
w/o ExpDecay, and
IFL-MM on SAD met-
ric of validation set.

Ablation Study We conduct ablation study on our IFL-MM to in-
vestigate the effectiveness of each component. In Table 5, we com-
pares our IFL-MM with IFL-MM without regularization (Reg), re-
modelling BN statistics (RemodelBN), and exponential learning
rate decay (ExpDecay). The results show that each component has
its own contribution to OOD data adaptation. To further demon-
strate the effectiveness of RemodelBN and ExpDecay, in Fig. 5,
we present the curve comparison of validation performance during
training. The IFL-MM convergence speed is the best compared to
IFL-MM without RemodelBN/ExpDecay and, in the end, the IFL-
MM validation performance is on par with or even better than the
other two. Further, as indicated in Table 5, our test performance
in OOD (resp. ID) data is overall better than (resp. comparable
with) IFL-MM without Reg/RemodelBN/ExpDecay. Therefore,
the above observations demonstrate the faster convergence speed
and anti-over-fitting ability of our IFL-MM.

4.3 Open Set Matting (OSM)
We build our open set matting (OSM) framework by the following steps: (1) Train our
OOD-DN on 15 ID class data; (2) Obtain detected OOD data out of the Toy SIMD dataset;
(3) Adapt the pre-trained matting network to OOD data by leveraging our IFL-MM. Noted
that, instead of 5-way 6-shot images, we randomly sample 30 images out of detected OOD
data. Our OSM results are shown in Table 3. The detailed results of each class are presented
in Table 4. It is obvious that, in challenging 5 OOD classes, our OSM is competitive against
IFL-MM trained with purely OOD samples. We present the visual results of our OSM in
Fig. 3. It is noted that our OSM significantly improves OOD matting visual results and
sometimes is on par with IFL-MM that is trained by purely OOD data.

To make our open set matting framework progressively incorporate novel classes, our
OOD-DN can be combined with research about open world recognition [2, 9, 10, 43] to
scale elegantly with the increasing number of classes. Then, the cycle of our open set matting
framework can be pushed to open world matting.

5 Conclusion and Future Work
We introduce the first open set matting (OSM) framework that contains two networks, an
OOD detection network (OOD-DN) and an incremental few-shot learning matting module
(IFL-MM). Our OOD-DN leverages prototype learning and intra-batch connection to be
aware of unseen objects, maintain inter-class separability and intra-class compactness, and
achieve the state-of-the-art OOD detection performance. Our IFL-MM can effectively pre-
vent catastrophic forgetting and over-fitting. For future work, our OOD-DN and IFL-MM
still have performance improvement space and our OSM can be extended to scale flexibly
with the increasing number of classes for open world matting.
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