OSM: An Open Set Matting Framework with OOD Detection and Few-Shot Learning

Yuhongze Zhou¹, Issam Hadj Laradji², Liguang Zhou³, Derek Nowrouzezahrai¹ ¹McGill University & ²ServiceNow Research & ³The Chinese University of Hong Kong (Shenzhen)

Open Set Matting Framework (OSM)

The overview of our OSM. The out-of-distribution (OOD) detection network detects unseen samples whose appearance within unknown region of trimap is unseen during training. After annotation of a few unseen samples, we conduct few-shot adaptation.

Our contributions:

- The first open set matting (OSM) framework to tackle matting task from an open set perspective.
- Our OOD detection network achieves the new state-of-the-art performance on SIMD dataset compared to other OOD detection methods.
- We validate that our few-shot learning matting module can not only prevent catastrophic forgetting but also avoid over-fitting.

OOD Detection Network (OOD-DN)

Our OOD-DN leverages prototype learning with intra-batch connection to be unseen-aware and generate informative logit features whose maximum is regarded as negative anomalous score.

Incremental Few-Shot

Learning Matting Module

Visual comparison of matting results on 5 OOD classes of SIMD dataset. From the 1st row to the 5th row, glass_ice, fire, water_drop, spider_web, and water_spray. From left to right, image, trimap, GT, Pre-trained model, Finetune, IFL-MM (Ours), and OSM (Ours).

Experimental Results

Methods	AUROC(IN)↑	AUPR(IN)↑	$FPR95(IN) {\downarrow}$	AUROC(OUT)↑	AUPR(OUT)↑	$FPR95(OUT) \downarrow$	DetectionError↓
MSP [18]	0.673	0.879	0.882	0.673	0.360	0.621	0.332
MaxLogit [19]	0.623	0.855	0.959	0.623	0.290	0.740	0.363
EnergyScore [30]	0.605	0.847	0.995	0.605	0.278	0.751	0.363
1-D Subspaces [58]	0.734	0.896	0.795	0.734	0.501	0.722	0.322
MMSP [3]	0.660	0.864	0.941	0.660	0.328	0.837	0.360
EDS [3]	0.630	0.810	0.959	0.630	0.319	1.000	0.367
OOD-DN (Ours)	0.819	0.940	0.791	0.819	0.541	0.413	0.230

OOD detection results on SIMD dataset.

λ	PL	\mathcal{L}_{CE}	\mathcal{L}_{IBC}	MSP	MaxLogit	AUROC(IN)↑	AUPR(IN)↑	FPR95(IN)↓	AUROC(OUT)↑	AUPR(OUT)↑	FPR95(OUT)↓	DetectionError
	1	1			~	0.315	0.663	0.996	0.315	0.183	0.964	0.485
	1	1		~		0.664	0.857	0.841	0.664	0.353	0.722	0.349
$\lambda = 0.1$		1	~	~		0.589	0.807	0.945	0.589	0.293	0.919	0.406
		~	1		~	0.717	0.891	0.850	0.717	0.414	0.703	0.328
$\lambda = 0.1$	1	~	~	~		0.493	0.738	0.955	0.493	0.247	0.979	0.464
	1	1	~		~	0.819	0.940	0.791	0.819	0.541	0.413	0.230
		1	~	~		0.763	0.917	0.923	0.763	0.431	0.576	0.283
$\lambda = 1.0$		~	1		1	0.752	0.917	0.950	0.752	0.390	0.558	0.279
$\lambda = 1.0$	1	~	~	~		0.547	0.791	0.914	0.547	0.308	0.891	0.445
	1	~	1		1	0.743	0.876	0.655	0.743	0.573	0.848	0.287

 Methods
 SAD(IN)↓
 SAD(OUT)↓

 Pre-trained
 33.71
 79.47

 Finetune
 154.07±17.45
 147.46±9.86

 IFL-MM (Ours)
 44.87±5.13
 68.08±3.56

 OSM (Ours)
 37.22±2.54
 70.78±3.84

Matting results on SIMD dataset.

Reg	ExpDecay	RemodelBN	SAD(IN)↓	SAD(OUT)↓
\checkmark	\checkmark		43.89	69.64
\checkmark		\checkmark	47.65	69.25
	\checkmark	\checkmark	153.54	149.15
\checkmark	\checkmark	\checkmark	<u>44.87</u>	68.08

Ablation study results of our OOD detection network on SIMD dataset. PL refers to prototype learning.

Ablation study results of our IFL-MM