XCon: Learning with Experts for Fine-grained Category Discovery

Problem Definition & Motivation

- Objective: cluster unlabeled images leveraging the information from seen classes
- Challenge: large inter-class similarity & intra-class variance
- The model aims to learn subtle discriminative cues between categories to be able to distinguish.

Contrastive Learning

unsupervised contrastive learning

supervised contrastive learning

Self-supervised Representations

Siwei Yang

DINO w/o our fine-tuning

Zhongkai Zhao

DINO w/ our fine-tuning

Bingchen Zhao

Cluster the data based on class irrelevant cues such as the object pose or the background

Method

Yixin Fei

- **Dataset partitioning** features clustering into K groups by k-means
- Learning discriminative representations apply contrastive loss on each sub-dataset

Experimental Results

- the best performance on the 'All' and 'New'
- cluster images based on correct cues more tightly

Table 2: Results on generic datasets.										
	CIFAR10			CIFAR100			ImageNet-100			
Method	All	Old	New	All	Old	New	All	Old	New	
<i>k</i> -means [18]	83.6	85.7	82.5	52.0	52.2	50.8	72.7	75.5	71.3	
RankStats+	46.8	19.2	60.5	58.2	77.6	19.3	37.1	61.6	24.8	
UNO+	68.6	98.3	53.8	69.5	80.6	47.2	70.3	95.0	57.9	
GCD [24]	91.5	97.9	88.2	73.0	76.2	66.5	74.1	89.8	66.3	
XCon	96.0	97.3	95.4	74.2	81.2	60.3	77.6	93.5	69.7	

Table 3: Results on fine-grained datasets.

		CUB-200		Stanford-Cars		FGVC-Aircraft			Oxford-Pet			
Method	All	Old	New	All	Old	New	All	Old	New	All	Old	New
<i>k</i> -means [18]	34.3	38.9	32.1	12.8	10.6	13.8	16.0	14.4	16.8	77.1	70.1	80.7
RankStats+	33.3	51.6	24.2	28.3	61.8	12.1	26.9	36.4	22.2	-	-	-
UNO+	35.1	49.0	28.1	35.5	70.5	18.6	40.3	56.4	32.2	-	-	-
GCD [24]	51.3	56.6	48.7	39.0	57.6	29.9	45.0	41.1	46.9	80.2	85.1	77.6
XCon	52.1	54.3	51.0	40.5	58.8	31.7	47.7	44.4	49.4	86.7	91.5	84.1

DINO w/ our fine-tuning

airplane	bird	deer	frog	ship
automobile	cat	dog 🛛	horse	truck

 $\mathcal{L}_{\text{coarse}}$

 $\mathcal{L}_{ ext{fine}}$