
A Different self-supervised representations
The self-supervised representation provides us the information to partition the training

data into k expert sub-datasets, so we analyze the performance of our method by fine-tuning
different pretrained representations of other self-supervised ViT models, i.e. MoCo v3 [2]
and MAE [4]. We initialize the ViT-B-16 model [3] with the parameters pretrained on
ImageNet-1k by MoCo v3 for 300 epochs and by MAE for 800 epochs respectively. The
result in Table 1 shows that with the self-supervised representation of DINO [1], our method
performs 7.3 − 20.7% better than the other two on CUB-200 and 1.8 − 22.4% better on
Stanford-Cars. We observe that DINO still shows the best performance on clustering the
data based on class-irrelevant informations.

Table 1: Results with different self-supervised representations.
self-supervised

ViT model
CUB-200 Stanford-Cars

All Old New All Old New

DINO 51.8 53.8 50.8 41.0 59.1 32.2
MoCo v3 37.6 42.8 35.1 24.7 36.7 18.9

MAE 35.5 46.5 30.1 38.7 56.0 30.4

B Estimating the number of classes
As a more realistic scenario, the prior knowledge of the number of classes is unknown

in the GCD. We follow the method in [5] to estimate the number of classes in the unlabeled
dataset by leveraging the information of the labeled dataset. We compare our estimated
number of classes in unlabeled data

∣∣Ĉu
∣∣ with the ground truth number of classes in unlabeled

data |Cu| in Table 2. We find that on Stanford-Cars and FGVC-Aircraft, the number of classes
estimated by our method is significantly closer to the ground truth compared with GCD [5].
Our method tends to show better performance on fine-grained datasets, given that the dataset
partitioning can help the model learn more discriminative features when facing the more
challenging datasets that have little obvious difference.

Table 2: Estimation of the number of classes in unlabeled data.
CIFAR10 CIFAR100 ImageNet-100 CUB-200 Stanford-Cars FGVC-Aircraft Oxford-Pet

Ground truth 10 100 100 200 196 100 37
GCD [5] 9 100 109 231 230 80 34
XCon 8 97 109 236 206 101 34

C Performance with estimated class number
We use the class number estimated in Table 2 to evaluate our method, displaying the

performance of our method when the unlabeled class number is unavailable. We report the
results on generic image classification benchmarks in Table 3 and the results on fine-grained
image classification benchmarks in Table 4. With our estimated class number

∣∣Ĉu
∣∣, our

method performs better on Stanford-Cars and also reaches comparable results on the other
five datasets except CIFAR10, which shows that our method is also promising under the
more realistic condition.

D Ablation on contrastive fine-tuning
We further ablate the components of contrastive loss in Table 5. We find that only with

unsupervised contrastive loss, i.e. λ = 0, the ACC drops 21.5− 23.6% on CUB-200 and
22.2−46.6% on Stanford-Cars, which means the combination of supervised contrastive loss

1

Citation
Citation
{Chen, Xie, and He} 2021

Citation
Citation
{He, Chen, Xie, Li, Doll{á}r, and Girshick} 2022

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Caron, Touvron, Misra, J{é}gou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Vaze, Han, Vedaldi, and Zisserman} 2022

Citation
Citation
{Vaze, Han, Vedaldi, and Zisserman} 2022

Citation
Citation
{Vaze, Han, Vedaldi, and Zisserman} 2022



Table 3: Results on generic datasets with our estimated class number.

known Cu CIFAR10 CIFAR100 ImageNet-100

All Old New All Old New All Old New

✓ 96.0 97.3 95.4 74.2 81.2 60.3 77.6 93.5 69.7
✗ 70.1 97.4 56.5 72.5 80.3 56.8 75.6 91.5 67.6

Table 4: Results on fine-grained datasets with our estimated class number.

known Cu CUB-200 Stanford-Cars FGVC-Aircraft Oxford-Pet

All Old New All Old New All Old New All Old New

✓ 52.1 54.3 51.0 40.5 58.8 31.7 47.7 44.4 49.4 86.7 91.5 84.1
✗ 51.0 57.8 47.6 41.3 58.8 32.8 46.1 47.6 45.3 82.1 81.7 82.4

and unsupervised contrastive loss with the balanced parmeter λ = 0.35 is necessary and can
reach the best performance.

Table 5: Ablation study of contrastive loss.

λ
CUB-200 Stanford-Cars

All Old New All Old New

0 29.6 30.2 29.3 10.8 12.5 10.0
0.35 51.8 53.8 50.8 41.0 59.1 32.2

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-

janowski, and Armand Joulin. Emerging properties in self-supervised vision transform-
ers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 9650–9660, 2021.

[2] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-
supervised vision transformers. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9640–9649, 2021.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[4] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

[5] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category
discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7492–7501, 2022.

2


