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Abstract

We present Style2NeRF, an unsupervised model for one-shot recovery of 3D pose,
shape and appearance of symmetric objects. Style2NeRF contains a transcoder which
disentangles 2D representations from pretrained StyleGANSs, then maps them to a se-
mantically editable 3D NeRF generator. As such, the generative NeRF inherits Style-
GAN’s expressiveness and image editing properties, translating them to 3D. We make
four key contributions: (i) We provide a novel model to accurately estimate an object’s
3D pose, shape and appearance without any human supervision during training; (ii) We
show how to map between semantically meaningful 2D and 3D representations using a
novel disentangled generative NeRF; (iii) we introduce the pose and viewpoint ambiguity
problem (suffered by existing 3D GAN methods) and propose a solution improving pose
estimation accuracy; (iv) Finally, via transfer learning, we show our model can be trained
on real car images where the pose distribution is unknown. Style2NeRF outperforms the
state-of-the-art on the CARLA cars dataset as well as a fully supervised model for the

task of car pose estimation on ShapeNet-cars and a new dataset of real car images.

1 Introduction

An essential computer vision task in robotics and scene understanding is that of reconstruct-
ing 3D objects from single-view RGB images. This problem is ill-conditioned and very
hard for computer vision systems. Without prior knowledge there is insufficient informa-
tion in a single image to recover the 3D object. Machine learning helps in this case as
strong priors can be learnt from labelled data and there have been many recent advance-
ments [2, 14, 15, 19, 30, 37]. Often, 3D shape models are constructed offline and used as
priors to help constrain the problem. However, these models are difficult to obtain, limited
and either require 3D scans or the labour of 3D artists [8, 21, 40]. Some approaches intend to
learn the 3D representation from the images themselves or refine the models [2, 15, 19, 37],

with all approaches incorporating some form of differentiable rendering.
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Figure 1: Style2NeRF: Our model predicts the 3D pose of a car from a single image while also pro-
ducing a semantically editable neural radiance field. The model forms a mapping between a pretrained
2D and 3D GAN via a transcoder and uses self-supervision for finetuning. No human supervision is
required for training and no pose training labels are necessary.

In recent years neural radiance fields (NeRFs) have become another increasingly popular
method of representing a scene in 3D due to their high fidelity. This has spurred a num-
ber of works to look at recovering NeRFs from a single image (one-shot NeRF) [18, 24,
29, 32, 35, 38]. Most methods require strong camera pose supervision from multi-view im-
ages, either hand or machine annotated, or synthetically derived. However, this paper deals
with the even harder setting whereby no labels are provided. This means priors on shape,
appearance and pose must be learnt from image information alone. Generative adversairal
networks (GANs [11]) have shown potential to learn these priors unsupervised. For instance,
StyleGAN [13] representations have been shown to disentangle pose, shape and fine detail
naturally, a property which has been used to help lift objects to 3D [12, 17, 28, 33, 39], these
methods are 3D aware, but lack multi-view consistency. A recent method EG3D [7] does
produce a StyleGAN based NeRF generator which is multi-view consistent. However, this
method does not lift images to 3D.

Prior works have also looked at self-supervised pose estimation [22, 25] where no pose
labels are provided. However, our method is also designed for shape reconstruction, view-
point point synthesis and 3D object editing. Our method is also multi-view consistent com-
pared to [25] and does not require matching pairs of training images as in [22].

Up to now only one other such method, Pix2NeRF [4], proposes recovering a NeRF in
the above mentioned unsupervised setting. One drawback is that their approach relies upon
a known pose distribution of the training data. Similar to their approach, our method also
builds upon the work of 7-GAN [5]. However, our conditional NeRF is shown to transfer
well from synthetic images (where a pose distribution is known) and then capable of training
on real images without requiring a known pose prior. Our method is also semantically ed-
itable and has an improved inductive bias leading to greater pose estimation performance for
symmetric objects. Thus, we believe that our approach is the first unsupervised, conditional
and semantically editable NeRF.

Our method called Style2NeRF, shown in Figure 1, leverages rich high level information
learnt from 2D StyleGANs and encodes an input image to this latent space. A transcoder
maps the the latent vector to camera viewpoint and a 3D semantic code for controlling the
NeRF based generative adversarial network (GAN [10]). This code is split into a shape code
for globally manipulating the volume density and colour code for globally altering RGB
values. The result is a model which can: (i) recover the input pose of the object, (ii) render
novel views, (iii) extract 3D shape via volume density querying and (iv) edit the NeRF in
semantically meaningful ways. All this without requiring any labelled data for training.
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Figure 2: NeRF decoder: Architecture of the NeRF decoder illustrated during inference using an
example input image.
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In summary, we make the following contributions: (i) a new unsupervised conditional
one-shot NeRF with object editing properties; (ii) a 2D to 3D GAN transcoder for stylised
lifting of images to 3D; (iii) an improved 3D inductive bias for more accurate pose estima-
tion, and (iv) we demonstrate state-of-the-art performance on existing datasets.

2 Method

This section provides an overview of our system and describes in detail the architecture for
Style2NeRF. Our system lifts single-view images of pre-segmented objects to 3D in a single
forward pass of a neural network. The architecture is broken down into three main stages, as
shown in Figure 1: (i) An image is encoded to a StyleGAN latent representation; (ii) from
this the transcoder produces a pose and disentangled latent vector of a NeRF based GAN,
(iii) finally, a NeRF decoder maps the latent vector to parameters controlling a conditional
NeRF model via feature modulation. The final 3D model can be edited by manipulating
either the StyleGAN code or the shape and colour components of the 3D GAN latent vector.
We next discuss each part of the method in detail.

2.1 StyleGAN Encoder

At the foot of our system is a StyleGAN image encoder giving rise to a rich set of seman-
tically meaningful features. In detail, StyleGAN is a convolutional neural network which
maps a latent vector z € Z drawn from a normal distribution to a realistic image. The la-
tent vector z is first mapped to an intermediate code w € W which is then transformed to
wt = (wy,wa,...,w) € W™ by L affine transformation layers (one layer per w;). Once
trained, these layers naturally control certain image attributes. Earlier layers have been found
to represent camera pose with later layers controlling shape, texture and finer details. When
provided with a source image, the task of the encoder is to recover the w' which feeds into
StyleGAN to produce a close approximation to the source. This process is known as GAN
inversion and for this work we use a residual based encoder, named ReStyle [1].

2.2 NeRF Decoder

We represent 3D objects implicitly using a conditional NeRF similar to the 7-GAN model
of [5]. Our model however. is designed to have a disentangled latent code controlling shape
and colour separately.

Architecture. The full architecture of our NeRF Fy, is illustrated in Figure 2. As input, Fy,
takes a spatial location (x,y,z) and produces an RGB colour and volume density 6. Using
volumetric integration and stratified ray sampling one can render an image, an alpha mask
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and depth map from any viewpoint [23]. Our NeRF does does not use view direction (as
is typical in NeRFs for modelling viewpoint effects) as we found this can cause the model
to more easily learn degenerate solutions (Figure 4). A shape SIREN [34] first processes
(x,¥,z) to output volume density. Next, the penultimate feature layer of this network feeds
into a second smaller colour SIREN to produce an RGB colour.

Conditioning the NeRF. Fy, is conditioned on a latent vector p € P (drawn from a normal
distribution) formed from a concatenation of a shape code s and colour code c, both of 256
dimensions. Object colour and shape can be altered by manipulating ¢ and s separately (see
Figure 7(a)). These codes (after running through a mapping network) modulate two separate
corresponding SIREN networks.

Pose estimation. Style2NeRF strives to recover the NeRF and camera viewpoint which
generated an input image. To recover object pose, the inverse of the camera viewpoint is
used. However, this requires all generated objects to be canonicalised and oriented in the
same way within the NeRF volume, giving rise to the pose and viewpoint ambiguity problem.

Pose and view point ambiguity. GAN based NeRFs [4, 5, 6, 12] trained without pose
labels are free to generate objects at any orientation within the NeRF volume. This means
the same viewpoint of an object e.g. front of a car, can be rendered from different camera
viewpoints in the NeRF volume. Model regularisation tends to restrict the extent of the
ambiguity e.g. it is easier for the model to generate cars in the same orientation, however,
there is no direct enforcement. Thus, recovering object pose by camera pose inversion would
not be accurate enough for pose estimation. Therefore, we solve this problem by introducing
a strong symmetric inductive bias as well as a pose constraint when optimising.

Symmetric inductive bias. By restricting our method to 3D objects with a single plane of
symmetry, we force objects in the NeRF volume to align the plane along a specific set of
axes. This is done during rendering, rather than shooting straight rays through the volume,
instead rays are reflected off the yz-plane. Such a strong inductive bias causes generated
objects to precisely align along their planes of symmetry, locking one axis of rotation. To
help fix the remaining rotations we introduce a pose constraint (explained in Section 2.4).

2.3 Transcoder

It has been observed in prior works that altering viewpoint by directly manipulating the style
code is possible [28, 33]. However, the results are not multi-view consistent. Our decoder
remedies this with a transcoder, trained to further disentangle view-point from w* and pro-
duce a latent code for controlling a multi-view consistent generative NeRF. The transcoder
is constructed from two neural networks: (1) a camera pose regressor and (2) a network to
map between the latent spaces of a StyleGAN and the 3D GAN based NeRF.

Camera regressor. The camera of the NeRF is assumed to lie on the surface of a sphere
with objects centered at it’s origin. The camera viewing angle is fully determined by the
rotations 0 (azimuth) and ¢ (elevation) around the vertical and horizontal axes, respectively.
The camera pose regressor is a neural network which processes the first layer latent code wy
to predict a view direction. An initialisation block makes the first rough ‘guess’, this guess is
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Figure 3: Transcoder: The transcoder consist of two networks: (a) The camera pose regressor, and
(b) The style mapping network which converts the full w StyleGAN code to a 3D shape s and colour
¢ code. Both networks consist of stacks of fully connected (FC) layers and activation functions are
shown. Further details can be found in the text.

fed to a refinement block which updates the guess by predicting a residule. The refinement
block is repeatable and we found two iterations sufficient. Details can be seen in Figure 3(a).
The initialisation and and refinement blocks are trained as angle classifiers and repeating
allows the model to make a choice between equally probable modes. Angles are defined by
365 equally spaced bins between 0 and 27.

Style mapping. The style mapping network is a transform S : W — P between 2D Style-
GAN latent codes and 3D codes governing the response of the NeRF decoder. The architec-
ture is fully described in Figure 3(b).

2.4 Training and losses.

Our model is trained to reconstruct input images using three loss types: (i) reconstruction
losses, (ii) an adversarial loss and (iii) a pose constraint. Training happens in two phases: (1)
Decoder pretraining, to initialise parameters of our NeRF decoder and (2) Finetuning, where
the transcoder and generative NeRF are optimised jointly. The StyleGAN encoder is trained
and fixed separately.

Adversarial loss. In the pretraining phase, our NeRF decoder is trained following a similar
procedure as m-GAN. Latent shape and colour codes along with camera poses are sampled
and rendered images made to progressively "fool" a discriminator. We use the same dis-
criminator architecture as the original 7-GAN model. The adversarial loss provided by the
discriminator is denoted as L,qy. During pretraining an object mask loss and pose constraint
are also applied.

Object mask loss. An object mask loss is used to force the rendered alpha masks to match
the ‘true’ mask of the object. This ensures improved shape recovery under restricted training
viewpoints. Also it stops the NeRF learning occluders/floaters which is dense matter the
NeRF paints with background colour, spoiling the underlining shape. At train time, a pre-
trained segmentation network is used to segment the NeRF render and this is used as ground
truth. The object mask loss L,k is formulated as the cross entropy between the rendered
alpha and the predicted segmentation.
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Pose constraint. To further enforce NeRF generated objects align well, the principle vector
of the NeRF volume is calculated using a differentiable SVD (we use the native implementa-
tion in PyTorch). The normalised dot product between this vector and the z-axis of the NeRF
coordinate system is used to form the pose constraint 10ss Lpose.

Reconstruction losses. After pretraining, the model is finetuned end to end (other than
the encoder). Reconstruction losses can now be used with the NeRF latent codes and poses
provided by the transcoder, rather than sampled. Two losses are used: a photometric 1.2
loss between the pixelwise values of the input and output denoted as Lyhoro and a VGG [36]
perceptual loss, denoted as Lperc.

Training summary. The objective function for decoder pretraining is then forumlated as:
Lpre = Linask + Lady + Lpose, note that no loss weighting is used. For fine tuning, half the batch
uses the reconstruction loss Lyecon and poses are inferred. But, because the reconstruction
losses on their own can cause degenerate solutions and billboard effects, the other half of the
batch contains generated images with sampled poses and we apply the adversarial loss Lygy,
without reconstruction losses.

3 Experiments

Our method is evaluated on three datasets where we measure accuracy of pose estimation,
quality of reconstruction and generative performance. Details of the datasets and the evalu-
ations metrics used are provided below.

3.1 Datasets

Pose estimation performance is evaluated on two datasets, SRN-Cars and RealCars, consist-
ing of car images along with their corresponding camera poses. For evaluating generative
performance and reconstruction quality we use CARLA.

SRN-Cars. The SRN-Cars dataset contains renderings from 3514 cars sampled from 3D
Warehouse with a train/test split across instances [8]. While each model is rendered from
50 random views per object instance, only those views from the top hemisphere are retained
for training. The standard test split for benchmarking is left unchanged and consists of 251
views sampled from each car instance based on an Archimedean spiral in the top hemisphere.

RealCars. The RealCars dataset is constructed by sampling 12000 images of segmented
car instances from the CompCars dataset. The off-the-shelf PointRend [20] method is ap-
plied to each image to segment the car and set the background white. The images are cropped
with a square and downsampled to 128 by 128 images. Cropping is centred according to an
ellipse fitted to the segmentation mask. Crop size is set so that once downsampled, the
scaled minimum axis of the ellipse is on average the same length as ellipses fit to segmen-
tation masks from SRN-Cars. For testing, 400 car images are hand labelled with camera
azimuth and elevation by visually adjusting a projected 3D bounding box to the image.
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Figure 4: Example degenerate solution. Example of a sampled NeRF after training our method on
RealCars without transfer learning. Notice the billboard effect: different cars are rendered as small
images directly in-front of the camera, appearing as if multiview consistency is lost.

CARLA. The CARLA [9] dataset was produced by rendering 16 car types from the CARLA
driving simulator at random viewpoints (upper hemisphere only) and textures to produce 10k
training images. There is no testing set for this dataset as its intended purpose is for training
GANES.

3.2 [Evaluation metrics

The following metrics are used durring evaluation:

Pose accuracy. Performance of camera pose estimation is measured as the difference in
degrees of rotation from ground truth, separately for azimuth and elevation. When evaluating
pose qualitatively, we show the pose of the car (inverse of the camera pose) as a set of
coordinate axes. The yellow axis points vertically, the blue axis points towards the car rear
and the red axis points out the right side of the car. See the "Novel Views + Poses" element
on Figure 1 for an example. Pose estimates from our method are native to the NeRF volume,
so before evaluation, a global rotation is applied to offset them to the ground truth (GT)
dataset coordinate system. As is usual for self-supervised pose estimation methods [25], we
use a sample of 100 labelled images from the GT dataset to learn this bias. In our case, this
is simply the median rotation difference.

Image fidelity. The reconstruction quality of model rendered images is evaluated using
generative metrics: Inception Score (IS) [31], Frechet Inception Distance (FID) [16], and
Kernel Inception Distance (KID) [3] as in prior works [5, 32]. Following the protocol of [4],
performance of our approach is also measured in a conditional and unconditional setting.

3.3 Baselines

Our method is compared to the state-of-the-art for 3D aware generative models on the
CARLA dataset: HoloGAN [26],GRAF [32] and n-GAN [5]. We also evaluate against
Pix2NeRF [4], the only model we know of (other than our own) which is generative, condi-
tional and unsupervised and serves as our direct comparison. For the task of pose estimation
we train a strong baseline regression network on SRN-Cars to directly predict elevation and
azimuth, fully supervised, using all training data. The network is a ResNet34 backbone with
two fully connected layers, one each for elevation and azimuth, to produce 365 different
angle classes (as in the last layers of Style2NeRF’s camera regressor).

3.4 Training on SRNCars

For pretraining we use the progressive training strategy of 7-GAN [5]. Using a resolution of
32x32 with a learning rate of 4e-4 both for the generator and discriminator, with batch size
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Figure 5: NeRF recovery on RealCars: Single-view 3D reconstruction on example images from
RealCars, layout is as described in Figure 6.
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Figure 6: NeRF recovery on SRNCars: Single-view 3D reconstruction on example images from
SRN-Cars. A comparison agains pixelNeRF is shown. Column 1: Input view, column 2: 2D recon-
struction from StyleGAN code (our method only), column 3: NeRF rendering from original viewpoint
and column 4-11: NeRF rendering from sampled views of a 360 spin. Inferred poses from our method
are shown as a red (right side), green (up) and blue (rear) coordinate axis.

30 and 23 samples per ray. Learning rate is dropped to 2e-4 and then 1e-4 after 10k and 100k
iterations, respectively. Pretraining is stopped at 150k iterations. Finetuning is the same, but
with batch size set at 15 and number of samples per ray at 24 and a transcoder learning rate
of le-4 throughout.

3.5 Training on RealCars

When training 3D aware generative models on data without pose labels, it has been found im-
portant to know the underlying camera pose distribution to avoid degenerative solutions [4],
see Figure 4. Some methods seek to learn the distributions [27] but this can be difficult to
tune. For Style2NeRF we can use StyleGANSs ability to generate out of domain images and
the Restyle encoder’s ability to invert them. Thus, after pretraining on SRN-Cars (known
pose distribution) our model transfers to RealCars (unknown pose distribution) naturally and
can then be finetuned using reconstruction losses. The transfer works well and results can
be seen in Figure 5 (more in supplementary). The training schedule here is the same as for
SRNCars.

4 Results

NeRF recovery. Example results of Style2NeRF applied to test input images from SRN-
Cars is shown in Figure 6 (more in supplementary). The 2D reconstruction is from the
StyleGAN encoder, the NeRF column shows the result after transcoding and rendering to
the same viewpoint. Novel views synthesised by the NeRF are shown as samples from a
360 degree spin around the NeRF’s volumetric origin. Also shown are the ground truth and
predicted car poses overlaid as coordinate axes on the corresponding images. We compare
qualitatively against pixeINeRF which has full access to pose labels during training and
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Figure 7: Object editing: (a) First column: Cars generated by sampling NeRF codes. Second to forth
columns: re-sampling color codes ¢ only, notice how shape remains unchanged. (b) First column and
row: Embedded cars into NeRF space. Second to forth column: Style transfer by re-placing latent code
of last 4 layers of style code and re-embedding to NeRF using Style2NeRF transcoder.
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Figure 8: Interpolation: Linear interpolation between 3D semantic codes of a source and target image.
Upper row is from the SRNCars dataset and lower row is from the RealCars dataset.

Target

at inference for producing the spin images. In comparison it can be seen that pixelNeRF,
although producing good results under similar viewpoints, lacks the detail of Style2NeRF
which can hypothesis strong structural detail in unseen views. Our method is also able to
infer the pose of the vehicle which pixelNeRF cannot. A similar visualisation is shown for a
model trained on RealCars, with more examples in the supplementary.

Object editing. One can edit lifted objects using Style2NeRF either by manipulating the
3D GAN or StyleGAN codes, we show examples of both methods in Figure 7(a) and Fig-
ure 7(b) respectively. Both codes have semantic properties, in Figure 7(a) editing the colour
of cars without altering the shape is demonstrated. In Figure 7(b) the 2D StyleGAN code
is used for style transfer from cars in the top row to cars in the first column, restyling cars
without effecting shape.

Interpolation. As a demonstration of Style2NeRF’s well behaved latent space, illustrated
in Figure 8 are linear interpolations between the 3D GAN latent codes and poses inferred
on a source and target image. Notice the smooth change in colour, shape and pose between
source and target with car objects produced at every step of the interpolation and rotated
sensibly (more examples shown in supplementary).

Pose estimation. Pose estimation accuracy is evaluated on all test images from SRN-Cars
and RealCars. Angular absolute mean error is reported in degrees in Table 1 for eleva-
tion (Elev.) and azimuth (Azi.). Surprisingly, Style2NeRF outperforms the fully supervised
baseline for both elevation and azimuth on SRN-Cars and has better azimuth estimates on
RealCars, while being very competitive in elevation. We hypothesis that this is because
Style2NeRF is trained as a generator and during finetuning the transcoder can therefore ob-
serve generated cars in addition to those in the train set. An ablation of Style2NeRF without
the symmetric inductive bias and pose constraint (Style2NeRF w/o con.) shows larger errors,
indicating these additions alleviate the ‘pose and viewpoint” ambiguity problem.



10

CHARLES ET AL.: STYLE2NERF FOR ONE-SHOT SEMANTIC 3D RECONSTRUCTION

SRNCars - Rotation error (degrees)

RealCars - Rotation error (degrees)

Pose regressor Elev. Azi. min-Azi. Pose regressor Elev. Azi. min-Azi.
Baseline (ResNet34) 14 48 13 Baseline (ResNet34) 1 77 41
Style2NeRF w/o con. 10 85 16 Style2NeRF w/o con 6 114 32
Style2NeRF (ours) 9 45 8 Style2NeRF (ours) 3 70 19

SRNCars elevation error (degree)

SRNCars azimuth error (degree)

Style2NeRF (ours)
35 Baseline 3

Style2NeRF (ours)
Baseline

3
Frequency (%)
S

Table 1: Pose estimation evaluation on SRNCars and RealCars datasets with rotation errors shown in
degrees. Bar charts show distribution of rotation errors on SRNCars.

64 x 64 128 x 128
Method FID|, KID] ISt ‘ FID|, KID| ISt
HoloGAN [26] 134 9.70 - 67.5 3.95 3.52
GRAF [32] 30 0.91 - 41.7 2.43 3.70
n-GAN [5] 13.59 0.34 3.85 29.2 1.36 4.27
Pix2NeRF unconditional 10.54 0.37 395 | 27.23 1.43 4.38
Pix2NeRF conditional 12.06 0.44 3.81 38.51 2.37 3.89
Style2NeRF (ours) unconditional 9.29 0.33 398 | 21.93 1.03 4.57
Style2NeRF (ours) conditional 11.03 0.43 3.82 | 35.84 2.00 3.86

Table 2: Quantitative results on CARLA [9].

All methods struggle with front to back confusion of cars, resulting in what appears to
be noisy pose estimates for azimuth. Therefore, we show front to back confusion is the
true cause by reporting the minimum azimuth error (min-Azi.) after flipping the pose from
front to back. This results in an only 8 degree average error for our method on SRN-Cars.
For RealCars this is a 19 degree azimuth error, far superior to the baseline 41 degree error,
showing our method can generalise better across datasets. The distributions of the elevation
and minimum azimuth error is also shown for SRN-Cars below Table 1. This reveals that
when the baseline works well, pose estimates are more accurate than Style2NeRF. However,
as cases become more difficult Style2NeRF quickly becomes more reliable.

Image fidelity. Results of reconstruction and generative performances on CARLA are
show in Table 2. For the conditional and unconditional mode of evaluation our method out-
performs the state-of-the-art by a significant margin. Our approach performs significantly
better in all cases across all metrics.

5 Conclusions

In summary, we introduce Style2NeRF, an unsupervised single view NeRF method for re-
covering the pose, shape and appearance of symmetric objects. When evaluating on SRN-
Cars and our newly introduced RealCars dataset, our model outperforms a standard fully
supervised model. When evaluating on the CARLA cars dataset Style2NeRF beats the state-
of-the-art across all metrics. We show our model can generalise well from synthetic to real
datasets via transfer learning and that the NeRFs produced are semantically editable.
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