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Abstract

Visible watermarks are designed to protect the copyright of images. Inversely, visi-
ble watermark removal studies how to enhance the removal resistance of visible water-
marks. The existing watermark removal methods have achieved competitive results, but
they cannot cope with diverse watermarks and complicated semantics very well. For the
problem of diverse watermarks, we propose watermark-specific dynamic kernel, which
can detect and remove watermark adaptively considering the specific properties of differ-
ent watermarks. For the problem of complicated semantics, we develop semantic-aware
propagation, which aims to reconstruct the corrupted pixels by borrowing information
from semantically similar pixels in the neighboring region. We conduct ample experi-
ments on two benchmark datasets, demonstrating that our method outperforms previous
methods.

1 Introduction

As a prevalent information carrier nowadays, images are ubiquitous in a wide range of appli-
cations, during which the copyright issue becomes critical for information security. To solve
this problem, we can superimpose visible watermarks on images to clarify and protect the
copyright. As an inverse process, visible watermark removal aims to erase the visible water-
mark and reconstruct the background image. Visible watermark removal could provide infor-
mative and useful hints for developing more robust watermarking techniques. In recent years,
this research direction has attracted growing interest of many scholars [2, 4, 6, 8, 19, 25],
but the state-of-the-art performances are still far blow our expectation. Note that background
image is also called watermark-free image, so two terms “watermark-free image" and “back-
ground image" are used interchangeably. In Figure 1(a), we show a pair of watermark and
watermark-free image, as well as the obtained watermarked image.

Early visible watermark removal methods require either prior knowledge (e.g., location)
of the watermark [20, 30, 32] or strict assumption of the watermark (e.g., the same water-
mark is present in different image) [8, 12]. To eliminate the requirement of prior knowledge
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Figure 1: (a) Given a pair of watermark and watermark-free image, we superimpose the
watermark on the watermark-free image to yield a watermarked image. (b) The segmentation
results using HRNet+OCR [42] pretrained on COCO-stuff dataset [27].

and strict assumption, many methods based on deep learning have been developed recently
[2, 4, 6, 19, 25, 26, 28]. Several methods [2, 25, 28] employed generative adversarial net-
works to remove the watermark and recover realistic background images. Besides the out-
put watermark-free image, a few methods [6, 26] designed multi-task framework with one
encoder and multiple decoders, which have additional outputs (e.g., watermark pattern and
watermark mask). Although these methods have greatly advanced the research on visible wa-
termark removal, they may produce low-quality images with blurring and distortion, when
meeting diverse watermarks and complicated semantics.

In this paper, a novel visible watermark removal method called DKSP is developed,
which is equipped with Dynamic Kernel and Semantic-aware Propagation. Following previ-
ous works [6, 26], we adopt a multi-task learning framework to cope with two tasks: water-
mark localization and background restoration. One encoder is shared by two tasks and two
decoders are employed for two tasks separately. Specifically, the mask decoder produces
watermark masks of different scales, and the background decoder takes these predicted wa-
termark masks as auxiliary information. Previous watermark removal methods often fail
to handle diverse watermarks and complicated semantics, which motivates us to make two
contributions under this multi-task learning framework. On one hand, considering that the
watermarks have a diversity of colors, shapes, and patterns, we adapt the network to differ-
ent types of watermarks using dynamic convolutional filter [15, 21, 29, 35]. Specifically, we
design a dynamic kernel module (DKM) to dynamically generate the convolutional kernel
according to the watermark feature, so that the network can adaptively cope with different
types of watermarks. We insert DKM to both decoders. On the other hand, we explore incor-
porating semantic information into the network, which has never been studied in the field of
watermark removal. When using pretrained segmentation model to segment a watermarked
image, we observe that the segmentation model usually ignores the watermark region, or
classifies the watermark region as an isolated object, as illustrated in Figure 1(b). In either
case, it is useful to transfer information from semantically similar pixels in the neighboring
region to the watermarked pixels. To this end, we develop a semantic-aware propagation
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module (SPM), which is inserted into the background decoder.

In this work, we have the following contributions: 1) We design a novel dynamic ker-
nel module, which enables the network to tackle various types of watermarks adaptively;
2) We contribute a novel semantic-aware propagation module, which can help restore the
watermarked region using semantic information; 3) We perform comprehensive experiments
using two benchmark datasets, proving the advantage of our developed approach.

2 Related Work

Visible Watermark Removal: As the inverse process of adding watermark, watermark re-
moval is of great significance to enhancing the robustness of watermark, so it has attracted
considerable attention from many researchers. In [25] and [2], they leveraged generative ad-
versarial network to remove the watermark. Compared with the above two works, [28] also
used generative adversarial network, but in addition to the watermark-free image, the gener-
ator also outputs the watermark mask and watermark pattern. In [19], they used the form of
a single encoder and multiple decoders to predict watermark-free images, watermarked im-
ages, and watermarked masks. The final output is constructed by concatenating the input and
watermark-free images in light of the watermark mask. In [6], they also designed multi-task
framework with ResUNet being the backbone network. In the recent work [26], on the basis
of the multi-task ResUNet architecture, they designed three additional modules to promote
the prediction quality of watermark masks and watermark-free images. The above meth-
ods still have difficulty in tackling diverse and complex watermarked images. Therefore,
we design dynamic kernel to deal with diverse watermarks adaptively and leverage auxiliary
semantic information to boost the performance.

Image Content Removal: Visible watermark removal belongs to a broad scope named im-
age content removal, which includes myriads of tasks such as image deraining [11, 33, 37,
41], image dehazing [1, 5, 10, 18, 40, 43, 44], shadow removal [7, 9, 38]. To name a few, the
deraining method [33] adopted generative adversarial network, in which the generator con-
sists of a RNN and an auto-encoder. The RNN extracts the raindrop region attention of the
image, which is injected into the auto-encoder and the discriminator to improve the quality
of the derain. The shadow removal method [7] proposed the dual hierarchically aggregation
network to fully exploit multi-scale features to promote the effect of shadow removal. The
network uses one backbone network and two attentive aggregation heads to generate shadow
masks and shadow-free images respectively.

Dynamic Convolutions: Dynamic convolution has been extensively used in distinct deep
learning tasks, which has been discussed and classified in [16]. Here we mainly mean dy-
namic parameters. Dynamic parameters aim to produce input-dependent parameters, which
can be further divided into parameter adjustment [13, 17], weight prediction [15, 21, 29, 35]
and dynamic features [3, 24]. Our dynamic kernel module belongs to weight prediction in
dynamic parameter methods. To our best knowledge, this work is the first one using dynamic
kernel for visible watermark removal.

3 Our Method

Given a pair of watermark and watermark-free image /, we can overlay the watermark on
the image using alpha blending to get the watermarked image J. As an reverse process,
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Figure 2: Top figure: our whole network structure with one encoder and two decoders, in
which the mask decoder predicts watermark mask and the background decoder restores the
background image. The dynamic kernel module (DKM) is inserted into the last block in both
decoders and semantic-aware propagation module (SPM) is inserted before the penultimate
block of background decoder. Bottom figure: the architectures of DKM and SPM. The
detailed introductions to DKM and SPM can be found in Section 3.1 and 3.2 respectively.

visible watermark removal focuses on the goal of reconstructing I based on J. Since wa-
termark mask M is not available, we need to predict the watermark mask while removing
the watermark. As shown in Figure 2, we resort to the U-Net [34] architecture, in which
we design the encoder and decoder block structures following [19]. Our network includes
a shared encoder and two decoders responsible for watermark localization (mask decoder)
and background image reconstruction (background decoder) respectively. The first block of
the two decoders is shared, while the last three blocks are separated. In the mask decoder,
we predict a mask in each block, which is delivered to the background decoder block cor-
responding to this mask decoder block. For mask prediction, we use binary cross-entropy
10ss: Lopase = — Y j (M; jlogM; j+ (1 —M; j)log(1 — M, ;)), where M; j (resp., M; ;) is the
(i, j)-th entry in M (resp., M).

In each background decoder block, the encoder features from skip connection, the pre-
dicted mask from mask decoder, and the output from previous decoder block are concate-
nated as input. In the two decoders, we insert additional modules to enhance the perfor-
mance. Specifically, we insert dynamic kernel module (DKM) to both decoders, and insert
semantic-aware propagation module (SPM) to the background decoder. The required seman-
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tic information in SPM is provided by an off-the-shelf HRNet+OCR [42] model pretrained
on COCO-Stuff dataset [27]. The details of DKM will be introduced in Section 3.1 and the
details of SPM will be shown in Section 3.2.

The background decoder produces the background image [ and we enforce / to approach
the ground-truth background image / by using L; loss and perceptual loss [22]: Ly, = ||I —
Il[1+ Avgg Yaer .23 |[@F g (1) — Pl (1)]]1, where @, () represents the activation map of k-th
layer in VGG16 [36]. In the end, we collect the losses above and arrive at: L, = Lyae +
ALy,, where A is a hyper-parameter.

3.1 Dynamic Kernel Module

Considering the diverse properties (e.g., shape, color, pattern, transparency) of watermarks
in different images, it is challenging for one set of convolution filters to localize and erase
all types of watermarks. Inspired by previous works [15, 21, 35], we propose our Dynamic
Kernel Module (DKM) with dynamic convolution filters generated based on watermark fea-
tures. We insert DKM into the last block of two decoders, so that our network can deal with
different types of watermarks adaptively.

In the following, we first introduce DKM in the mask decoder. As shown in the bottom
left of Figure 2, in the last mask decoder block, we denote the last feature map as F,jfk and
the penultimate feature map as F¥, in which EZ* is used to predict the mask M. Although
the estimated mask M is not perfectly accurate, it can roughly capture the watermark feature,
based on which we can generate the dynamic convolutional filters tailored to specific water-
mark. Specifically, this estimated mask M is multiplied with the feature map F2¥. Then, we
downsample the masked feature map to 3 x 3 x C% (C% is the channel dimension of F)
via spatial average pooling. The downsampled feature map passes through a 1 x 1 convo-
lution layer to yield a dynamic kernel, which contains C?* depth-wise convolutional filters
with size 3 x 3. Note that we predict depth-wise convolutional filters [14] for efficiency,
with each convolutional filter acting upon each channel in the feature map. We apply the
obtained dynamic kernel to F(fik by depth-wise convolution to produce residual feature map
Fr"k , which is added to F,ﬁ{k to get the refined feature map F,ﬁk. Finally, we get the refined
mask M by passing ank through a 1 x 1 convolutional layer and a sigmoid layer. We adopt
the mask loss L, to supervise the refined mask. By using the dynamic kernel module, the
predicted refined mask can spot some missed pixels and erase some misdetected pixels.

Recall that the dynamic kernel module is also used in the last block in background de-
coder. However, unlike the mask decoder, we directly use the refined mask M from mask
decoder to supersede M. Similar to mask decoder, we apply the generated dynamic kernel to
obtain a residual feature map. Then, we add up residual feature map and original last feature
map to get a refined feature map. Finally, refined feature map is delivered to a 1 x 1 convolu-
tional layer to generate the background image /. Although previous work [26] has also tried
to adapt the network according to specific watermark, it simply concatenates watermark fea-
ture with original feature map. In contrast, we generate watermark-specific dynamic kernel
to modulate the feature map more effectively.

3.2 Semantic-aware Propagation Module

The watermarked regions restored by previous watermark removal methods are often of low
quality (e.g., blurring, distortion, artifacts). We conjecture that propagating information from



6  XING ZHAO, LI NIU, LIQING ZHANG: WATERMARK REMOVAL WITH DKM AND SPM

semantically similar neighboring pixels can help recover the watermarked region. For in-
stance, if a part of zebra is covered by watermark, we can borrow information from the
remaining part of zebra to restore the texture and color of the watermarked region. There-
fore, we propose a semantic-aware propagation module and insert it before the penultimate
block of background decoder.

To find semantically similar regions, we resort to pretrained segmentation model HR-
Net+OCR [42] pretrained on COCO-Stuff Dataset [27]. When applying this model to seg-
ment a watermarked image, one observation is that the segmentation model sometimes ig-
nores the watermarked region, that is, the watermarked region is classified as the category
of covered background (see top row in Figure 1(b)). In the other case, the segmentation
model may misclassify the watermarked region as an isolated object (see bottom row in
Figure 1(b)). In the former case, the information from semantically similar and nearby non-
watermarked region can help recover the watermarked region. In the latter case, the informa-
tion propagation within the watermarked region can also help reconstruct the watermarked
region. To locate semantically similar and spatially near pixels for each target pixel, we first
design semantic similarity map and spatial similarity map as follows.

Semantic similarity map: We use the pretrained segmentation model to extract the seman-
tic feature map, based on which we can calculate the cosine similarity between the semantic
feature vectors of two pixels. Considering efficiency, we downsample the semantic feature
map to 32 x 32 and calculate pair-wise cosine similarities, resulting in a semantic similarity
map S% € R1024x1024,

Spatial similarity map: We additionally introduce a spatial similarity map S*7, in which
each spatial similarity value s°7 (i, j) = exp(—d*P (i, j)) with d*P(i, j) being L, distance be-
tween two pixels.

As illustrated in the bottom right of Figure 2, we denote the last feature map in the
penultimate background decoder block as F,” € RH"*W’*C? "By denoting N*» = H*P x
WSP_ we resize S* and $*¢ to the same size N* x N*P, and multiple them element-wisely.
Then, we perform row-wise L; normalization to get the normalized similarity map S €
RNPXNP

We reshape the feature map F,” € R WXC 1o B3P ¢ RN"XC" and pass it through
a 1 x 1 convolutional layer to get FP e RN X - Similar to self-attention [39], we perform
information propagation by attending relevant values for query pixels. Specifically, we treat
the similarity map S as attention map and F,” as values. According to our motivation,
we could only deem watermarked pixels as query pixels. However, the predicted water-
mark mask is not accurate and there might be some missed watermarked pixels. Besides,
deeming all pixels as query pixels will bring no harm to the performance. Therefore, we
deem all pixels as query pixels by multiplying similarity map S with £;” to acquire the
attended values F;” = SF,” for all pixels. Finally, we reshape F,” € RN"*C" back to
F;P e REP>WPXCP and concatenate it with F;” channel-wisely. We decrease the channel
dimension of concatenated feature map to C*” and deliver it to the next decoder block.

4 Experiments

4.1 Experimental Setting

We use two datasets: Colored Large-scale Watermark Dataset (CLWD) [28] and LOGO30K
Dataset (LOGO30K) [6]. Both datasets contain colored watermarks and backgrounds, which
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CLWD LOGO30K
PSNRTRMSE,, | |[IoU(%)1| F; 1 |PSNRTRMSE,, ||IoU(%)1| F; T
U-Net [34] | 23.21 | 48.43 - - 24.64 | 43.29 - -
Qian eral. [33]| 34.60 | 19.34 56.65 |0.6910] 36.89 | 17.26 62.68 |0.7565
Cun etal. [7] | 35.29 | 18.25 59.41 (0.7122| 37.67 | 16.88 65.13 (0.7745
Lietal. [25] | 27.96 | 46.80 - - 30.51 | 39.11 - -
Cao etal. [2] | 29.04 | 41.21 - - 32.18 | 35.16 - -
WDNet [28] | 35.53 | 17.27 61.20 (0.7240| 39.15 | 15.94 68.21 |0.8010
BVMR [19] | 35.89 | 18.71 70.21 10.7871| 38.28 | 16.72 72.87 10.8305
SplitNet [6] | 37.41 15.25 71.96 (0.8027| 41.27 | 14.85 74.14 10.8411
SLBR [26] | 38.28 | 14.07 74.63 10.8234| 41.50 | 14.69 78.58 (0.8647
DKSP 38.84 | 12.16 77.30 |0.8480| 42.16 | 13.78 80.16 [0.8770
Table 1: The comparison of various methods on CLWD [28] and LOGO30K [6]. PSNR
and RMSE),, are used to evaluate the restored background image, while IoU and F; are used
to evaluate the predicted watermark mask. “—” means that the method does not predict
watermark mask. The best results are denoted in boldface.

Method

are realistic and challenging. The details of two datasets are left to Supplementary.

Our method is implemented with Pytorch [31]. The input image size is set to 256 x 256.
During training, we choose Adam [23] optimizer, in which the initial learning rate is 0.001,
momentum parameters are B; = 0.5, B, = 0.999, batch size is 8. According to the quality
of the predicted watermark-free images and watermark masks after several attempts, we
empirically set A4, to 0.001.

For baselines, we first compare with the following watermark removal methods: Li ef al.
[25], Cao et al. [2], WDNet [28], BVMR [19], SplitNet [6], SLBR [26]. In addition, follow-
ing [26], we also select some typical image-to-image translation methods and image content
removal methods for comparison. For typical image-to-image translation, we compare with
U-Net [34]. Besides, we compare with Qian etal. [33] for deraining, and Cun etal.[7] for
shadow removal.

In terms of evaluation metrics, we use Peak Signal-to-Noise Radio (PSNR), weighted
Root-Mean-Square distance (RMSE,,) for the restored background images. We use Intersec-
tion over Union (IoU) and F1-score (F7) for the predicted watermark masks.

4.2 Experimental Results

We list the results of our DKSP method and baseline methods in Table 1. One observation is
that watermark removal methods [6, 19, 26, 28] and image content removal methods [7, 33]
perform much better than the image-to-image translation methods [2, 25], which demon-
strates the necessity of predicting watermark masks for watermark removal. In addition,
baselines WDNet [28], BVMR [19], SplitNet [6], and SLBR [26], which are specifically
designed for watermark removal, outperform other methods [7, 33] in the wider scope.

Our DKSP method beats all baseline methods, indicating the advantage of our designed
modules. From Table 1, we can see that methods which can predict more accurate watermark
mask tend to generate better background image, which again indicates the importance of
mask prediction in watermark removal task.

For qualitative comparison, we show the reconstructed background images in Figure 3.
We compare with the baselines [6, 19, 26, 28]. In each row, we exhibit the watermarked
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Input GT Ours SLBR SplitNet BVMR WDNet

Figure 3: Visualization of watermark-free images produced by various methods on CLWD
[28] (first two rows) and LOGO30K [6] (last two rows). “Input" indicates the watermarked
image and “GT" indicates the ground-truth background image. We zoom in the watermarked
region in green bounding box for better observation.

image, the original background image, and the background images recovered using various
approaches. Based on Figure 3, our method is able to recover the texture details and overall
structure more accurately and coherently. For example, in the first two rows, baseline method
struggles with removing the watermark color and recovering the background color (blue,
gray), while our method is capable of removing the holistic watermark and restoring the
texture/color of the background image better.

We also visualize the predicted watermark masks from our method and baselines (SLBR
[26], SplitNet [6], BVMR [19], and WDNet [28]). From Figure 4, it can be observed that
our mask decoder branch can predict the watermark mask more accurately, whereas the
baselines are prone to have more missed detection and false alarms. For example, in the first
and third rows, our predicted masks are closer to ground truth, whereas the predicted masks
from the baseline methods are blurry or incomplete. In the fourth row, the baseline methods
may include an extra region mistakenly (e.g., SplitNet) or miss a large region (e.g., WDNet),
whereas our method can precisely localize the watermark in most cases.

4.3 Ablation Studies

We perform ablation studies on LOGO30K dataset to validate the necessity of each com-
ponent in our method. At start, we discard the dynamic kernel module and semantic-aware
propagation module. In this case, we obtain a basic network with one common encoder and
two separate decoders for two tasks. The obtained results are listed in row 1 in Table 2.
Based on row 1, we add our dynamic kernel module (DKM) in two decoders, leading
to the results in row 5. We can see that our DKM brings notable improvement for both
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Ours SplitNet WDNet

Figure 4: Visualization of predicted masks of various methods on CLWD [28] (the first two
rows) and LOGO30K [6] (the last two rows). “Input” indicates the watermarked image and
“GT" indicates the ground-truth watermark mask.

mask prediction and background reconstruction, which verifies the advantage of our pro-
posed DKM. On the basis of row 5, we change the output of dynamic kernel module into
non-residual form, that is, F,dk is directly used to predict mask or image without being added
to F%. The results are placed in row 2, from which we can observe that residual design is
indeed useful. Besides, we also use the whole feature map F instead of masked feature
map to generate dynamic kernel, corresponding to row 3 in Table 2. As mentioned in Sec-
tion 3.1, [26] also considered adapting to specific watermark and proposed SMR module.
We replace our DKM with SMR and list the results in row 4. The performances in row 5
are better than those in row 3 and row 4, which shows the advantage of generating dynamic
kernel conditioned on watermark feature.

Then, we add our semantic-aware propagation module (SPM) based on row 5, leading
to the results in row 9. The promotion demonstrates the effectiveness of our proposed SPM.
Based on row 9, we remove the spatial similarity map S*7 (resp., $*) and report the results
in row 8 (resp., row 7), which indicates that both maps contribute to the final performance.
Since our SPM is structurally similar to self-attention [39], we also replace our SPM by
typical self-attention and report the results in row 6. We can conclude that our designed
similarity map works better than the similarity map automatically learned in self-attention.

To intuitively show how the information propagation in SPM helps reconstruct the back-
ground, we further provide qualitative comparison between row 5 and row 9 in Figure 5. Two
rows correspond to two cases mentioned in Section 1: 1) the segmentation model ignores the
watermark; 2) the segmentation model classifies the watermark as an isolated object. In each
case, with a specified query pixel (yellow dot in “Input"), we show the semantic similarity
map S*, the spatial similarity map S$°7, and their combination $°°, from which it can be seen
that S can indicate the semantically similar and spatially near region of the query pixel.
In both cases, row 5 underperforms row 9, which proves the effectiveness of propagating
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Evaluation Metrics

# DKM SPM PSNRT RMSE,, | IoU(%)T Fi 1

1 - - 38.23 16.90 73.56  0.8308
2 | w/o residual output - 38.90 16.43 78.69 0.8634
3 w/o M mul - 38.88 16.54 76.58 0.8521
4 SMR [26] - 38.94 15.99 79.15 0.8678
5 vV - 39.41 15.90 79.71 0.8707
6 Vv self-attention [39] | 39.97 15.21 79.82 0.8725
7 vV w/o §% 39.90 15.59 79.81 0.8721
8 v w/o §°P 41.66 14.36 80.14 0.8748
9 vV vV 42.16 13.78 80.16 0.8770

Table 2: The ablation study results on LOGO30K [6]. “,/” indicates using the whole module
and “—” indicating discarding this module.

Input Segmentation R s i GT Row 5 Row 5 (zoom) Row 9 Row 9 (zoom)

Figure 5: Visualization results of semantic-aware propagation. “Input” is the watermarked
image. “Segmentation" is the segmentation result of HRNet+OCR [42] for input image. S*¢,
S$°P_ §¢° are the similarity maps for the query pixel (yellow dot in “Input"). “GT" indicates
the ground-truth background image. Row 5 and Row 9 correspond to the rows in Table 2.
We zoom in the region in green bounding box for better observation.

information from semantically similar and spatially near pixels.

5 Conclusion

In this work, we concentrate on watermark removal and develop a U-Net like model that
incorporates a novel Dynamic Kernel Module and Semantic-aware Propagation Module,
which can simultaneously predict watermark masks and reconstruct watermark-free images.
The Dynamic Kernel Module can make our network better adapt to watermarks of different
shapes, patterns and colors, while the Semantic-aware Propagation Module can make the
restoration of the watermark region more accurate. We conduct comprehensive experiments
on two large-scale datasets, which indicates that our approach performs more favorably than
the existing approaches.
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