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In the supplementary, we will first introduce the details of our used datasets in Section 1.
Then, we will provide more examples of restored background images in Section 2. After
that, we will discuss the limitations of our method in Section 3. Finally, we will show the
efficiency comparison with baselines in Section 4.

1 Dataset Details
In this work, we conduct experiments on two watermark removal datasets: CLWD [6] and
LOGO30K [1], which will be detailed next.
CLWD [6]: In CLWD, the training (resp., test) set contains 60,000 (resp., 10,000) images.
The training set contains 160 different watermarks and the test set contains 40 different
watermarks. In the training (resp., test) set, the background images are randomly selected
from the training (resp., test) set of PASCAL VOC2012 [2]. The watermarks are gathered
from public image websites. When overlaying the watermark on the background image, the
rotation angle, size, position, and transparency of the watermark in each watermarked image
are randomly decided. The transparency of the watermark is set within the scope of [0.3,
0.7].
LOGO30K [1]: LOGO30K contains 28352 training images and 4051 test images. The
background images are selected from the VAL2014 subset of MSCOCO [5] dataset. The
watermark collection includes more than 1k different and famous logos from the Internet.
The transparency of the watermark are in the range of (0.35, 0.85). All background images
and watermarks do not overlap in the training and test partitions.

2 More Visualization Results for Watermark Removal
In this section, we visualize the watermark-free image produced by our method and baselines
(SLBR [4], SplitNet [1], BVMR [3], and WDNet [6]) on CLWD [6] dataset (see Figure 1)
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Figure 1: Visualization of watermark-free images produced by various methods on CLWD
[6]. “Input" indicates the watermarked image and “GT" indicates the ground-truth back-
ground image. We zoom in the watermarked region in green bounding box for better obser-
vation.

Figure 2: Visualization of watermark-free images produced by various methods on
LOGO30K [1]. “Input" indicates the watermarked image and “GT" indicates the ground-
truth background image. We zoom in the watermarked region in green bounding box for
better observation.
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Figure 3: Example of failure cases of our approach on CLWD [6] (the first row) and
LOGO30K [1] dataset (the second row). “Input" indicates the watermarked image and “GT"
indicates the ground-truth background image.

and LOGO30K [1] dataset (Figure 2), from which we can observe that our method can
more accurately restore the textures and patterns in the watermark areas. For instance, in
the first example of Figure 1 and the first example of Figure 2, our model can remove the
watermark text well, while the results of baselines have obvious residual text (e.g., the letter
“H" on the face and the letter “D" on the bed). In the second example of Figure 1 and
the second example of Figure 2, the watermark is a color block, which is a more difficult
type of watermark to deal with. Our model outperforms the baseline methods in terms of
the removal effect, with lighter watermark traces and smaller chromatic aberration. In the
results produced by baselines, there exists noticeable color cast, that is, the ground (resp., the
motorbike) is tinted with the color of watermark logo in Figure 1 (resp., 2). In our results,
the colors of restored ground and motorbike are closer to their original colors.

3 Discussion on Limitation

Although our method can generally localize the watermarked region and restore the back-
ground well, there still exist some failure cases, especially when the textures and patterns of
the watermark or background are complicated. We show some examples of failure cases in
Figure 3, where our method is less effective when the watermark pattern is more complex.
In the top left example, our model can remove most of the watermark. However, for the
watermarked region with dark color (the dark green leaves), although our model can predict
the watermark mask accurately, it cannot completely remove the dark color and there are
some remaining leaves. In the bottom right example, the watermark has 3D effect and our
model lacks the ability to handle such watermarks. In the bottom left and top right exam-
ples, the watermark pattern is complex and the watermark color is similar to the background
color, making it difficult to localize the watermark area and thus leading to poor watermark
removal results.

4 Efficiency Comparison with Baselines

In Table 1, we compare with two baseline methods in terms of the number of training epochs,
training time (hour), inference time (second), and the number of model parameters. All
methods are trained and evaluated on Linux version 4.18.0-240.el8.x86_64, with 512GB
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#epoch Train(h) Test(s) #param(M)
SplitNet [1] 50 63 0.022 32.61
SLBR [4] 60 56 0.021 21.39

HRNet+OCR [7] — — 0.047 70.56
Ours 50 79 0.071 88.67

Ours (w/o HRNet+OCR) — — 0.024 18.11
Table 1: The number of training epochs, training time (hour), inference time (second), and
the number of model parameters of different methods on CLWD Dataset [6].

memory, Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz, and one A100 SXM4 40GB
GPU. We also report the results of pretrained segmentation model HRNet+OCR used in our
semantic-aware propagation module. As shown in Table 1, HRNet+OCR occupies a large
proportion of inference time and model parameters, while the complexity of the remaining
network is of the same order of magnitude as baselines. For efficiency, we will consider
using more light-weighted segmentation model in the future works.
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