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Abstract

Existing models on super-resolution often specialized for one scale, fundamentally
limiting their use in practical scenarios. In this paper, we aim to develop a general plugin
that can be inserted into existing super-resolution models, conveniently augmenting their
ability towards Arbitrary Resolution Image Scaling, thus termed ARIS. We make the
following contributions: (i) we propose a transformer-based plugin module, which uses
spatial coordinates as query, iteratively attend the low-resolution image feature through
cross-attention, and output visual feature for the queried spatial location, resembling
an implicit representation for images; (ii) we introduce a novel self-supervised training
scheme, that exploits consistency constraints to effectively augment the model’s ability
for upsampling images towards unseen scales, i.e. ground-truth high-resolution images
are not available; (iii) without loss of generality, we inject the proposed ARIS plugin
module into several existing models, namely, IPT, SwinIR, and HAT, showing that the
resulting models can not only maintain their original performance on fixed scale fac-
tor but also extrapolate to unseen scales, substantially outperforming existing any-scale
super-resolution models on standard benchmarks, e.g. Urban100, DIV2K, etc. Project
page: https://lipurple.github.io/ARIS_Webpage/

1 Introduction
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from corre-
sponding degraded low-resolution (LR) images. In the literature, existing research [8, 9, 10,
19, 26, 38, 39, 46] predominately focuses on training specific models that work well for
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a few scaling factors, thus, different models have to be trained for different factors, limit-
ing their practical use in real-world applications, when one may want to scale the image into
arbitrary-resolution for viewing purpose. To address this limitation, some recent approaches,
e.g. MetaSR [15], LIIF [6] and LTE [23] have considered designing specific architectures for
arbitrary-scale super-resolution with a single model. Despite being promising, these models
still fall behind the existing SR models on low-scale super-resolution, as we have experimen-
tally shown in Table 1.

In this paper, our goal is to develop a general plugin module that can be inserted into any
existing SR models, conveniently augmenting their ability to Arbitrary Resolution Image
Scaling, thus termed ARIS. Specifically, we adopt a transformer-based architecture, with
spatial coordinates naturally treated as the queries, that iteratively attend visual feature of the
low-resolution image through an attention mechanism, and output the visual representation
for desired high-resolution image, to be decoded into RGB intensity value at last. We can
continuously scale the image to arbitrary resolution by simply changing the granularity of
the spatial coordinates, resembling an implicit representation of the images.

In contrast to LIIF [6] and LTE [23], which also represent an image as a continuous
function by MLPs that maps coordinates and the corresponding local latent codes to RGB
values, thus achieving arbitrary-scale super-resolution, our proposed idea poses two critical
differences: i) we represent the image continuously at the feature level, mapping the low-
resolution image feature into the high-resolution image feature. Thus our module can be
inserted into any network without replacing other components and the pre-trained parameters
can be re-used directly, while LIIF [6] and LTE [23] need to retrain the whole network; (ii) we
use spatial coordinates as query, iteratively attend the low-resolution image feature through
cross-attention, and make full use of the global dependency in images, for example, self-
similarity, while LIIF [6] and LTE [23] take the local latent code as input and have a limited
receptive field.

Additionally, for the arbitrary-scale super-resolution task, it is often impractical to col-
lect the paired LR-HR images for each scale with high quality, which prevents model from
training towards unseen scales. To this end, we formulate this problem of reconstruction
with incomplete measurements and introduce a self-supervised training scheme, that scales
the image to a target resolution in the absence of paired data, by exploiting consistency
constraints. Specifically, for the scales whose high-resolution images are not available, the
model is trained by either upsampling the HR images of seen scales or downsampling the
reconstructed images towards seen scales. As a result, we show this self-supervised training
scheme can significantly improve the performance on unseen scales.

To summarise, we consider the problem of arbitrary-scale image super-resolution, and
make the following contributions: (i) we propose a transformer-based plugin module, called
ARIS, which resembles an implicit representation for images and can be inserted into any ex-
isting super-resolution models, conveniently augmenting their ability to upsample the image
with arbitrary scale; (ii) we introduce a novel self-supervised training scheme, that exploits
consistency constraints to train our ARIS plugin module towards out-of-distribution scales,
i.e., LR-HR image pairs are unavailable; (iii) the ARIS plugin module is orthogonal to the
development of new super-resolution architectures, we insert it into several strong models
published recently, namely, IPT [4], SwinIR [24], HAT [5], the resulting models outperform
the any-scale super-resolution models on various benchmarks, e.g. Urban100, DIV2K, etc.
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2 Related Work

Image Super-resolution. Image super-resolution (SR) is probably one of the most widely
researched problems in computer vision history, reviewing all the work would be prohibitively
impossible, we thus only discuss some of the most relevant work. Early super-resolution ap-
proaches are exemplar [3, 16] or dictionary [37, 42] based super-resolution. These methods
generate high-resolution images by using the similarities within and between images. And
the performance is limited by the size of the dataset. Since SRCNN [9], ConvNets were
adopted for solving the image super-resolution task, afterwards, numerous deep learning
based methods [8, 9, 10, 18, 19, 21, 25, 26, 38, 39, 45, 46] have been proposed to improve the
image quality. Speci�cally, some works innovate the architectural design of the ConvNets,
for example, the residual block [25, 45, 46], skip-connection [18, 19, 27] and recursive
network [19, 34]; Other works explore different training objectives, for example, using ad-
versarial learning [22, 38]. Recently, a series of Transformer-based approaches [4, 5, 24, 26]
have shown superior performance. Generally speaking, these models are often specialised
for single-scale super-resolution, which fundamentally limits their use in practical scenarios,
where we may want to scale the image to arbitrary scales.

Arbitrary-scale Super-resolution. To overcome the above limitation, MDSR [25] pro-
posed to integrate a collection of modules that are trained for different scale factors (i.e. x2,
x3, x4). Hu et al. [15] proposed MetaSR to solve the arbitrary-scale upsampling prob-
lem with meta-learning, which directly predicts the �lter weights for different scale factors.
Building on MetaSR, ArbSR [36] designs a scale-aware convolution layer to make better use
of the scale information and can handle the problem of asymmetric SR. Recently, LIIF [6]
introduces the idea of implicit neural representation for images, which treats images as a
function of coordinates, thus allowing to scale the image at continuous scales by simply ma-
nipulating the spatial grid of the image. LTE [23] introduces a dominant-frequency estimator
to allow an implicit function to learn �ne details while restoring images in arbitrary resolu-
tion. In this paper, we continue the vein of research on using implicit neural representation
for image super-resolution, we adopt the transformer-based architecture, where the spatial
grid can be used as the query in the transformer decoder, allowing to iteratively attend the
low-resolution image feature through cross-attention.

Implicit Neural Representation. Recent work has demonstrated the great potential of us-
ing neural networks as a continuous representation of the signals, for example, for shapes [1,
12, 13], objects [1, 14, 32], or scenes [17, 30, 33]. Theoretically, such continuous parameter-
ization enables to represent the signal to any level of �ne details, with signi�cantly less mem-
ory than using a discrete lookup table. In these representations, an object or scene is usually
represented as a multilayer perceptron that maps coordinates to signed distance [1, 17, 32],
occupancy [7, 29, 31] or RGB values [30, 33]. In this paper, we focus on learning implicit
image representation at the feature level by a transformer-based architecture.

3 Methods

In this paper, our goal is to develop a general plugin module for any existing super-resolution
(SR) model that can augment its ability to arbitrary resolution image scaling (ARIS). The
baseline SR network, which refers to the pre-trained scale-speci�c SR network can be sim-
pli�ed as an encoder-decoder network, where the encoder extracts the feature map for the
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Figure 1. An overview of our ARIS plugin module. Our ARIS plugin module can be inserted
into baseline SR network (a) to obtain arbitrary-scale SR network (b). We show the details of the
ARIS plugin module in (c). The ARIS module utilizes the coordinate map (regarded as QUERY) and
low-resolution image feature as input and outputs the desired super-resolution image feature.

low-resolution input image and the decoder outputs the super-resolution image as shown in
Figure 1(a). We can obtain the arbitrary-scale SR network by inserting our ARIS plugin
module into the baseline SR network as shown in Figure 1(b).

Overview. Assuming we have a training set withN paired low- and high-resolution im-
ages,Dtrain = f (XLR;X 2

HR;X 3
HR;X 4

HR)n;n 2 [1;N]g, whereXLR 2 RH� W� 3 refers to the
low-resolution image, andX k

HR 2 RkH� kW� 3;8k 2 [2;3;4] refers to itsk� upsampled high-
resolution image. The goal is thus to obtain a model that can transform a low-resolution
image into arbitrary scales:

Yg
SR = F (XLR;g ) = F DEC(F ARIS(F ENC(XLR);g)) (1)

whereF (�) denotes the trainable function, parameterized by the encoder (F E), decoder (F D)
of the baseline SR network and our ARIS plugin module (F ARIS), that maps a low-resolution
image (XLR), to the desired super-resolution image (Yg

SR 2 RgH� gW� 3), with the scaleg
denoting continuous values,e.g.g 2 [1;8].

In the following sections, we �rst describe the details of the proposed ARIS plugin mod-
ule in Section 3.1; we then introduce a novel training regime that allows training the model
for arbitrary resolution scaling, even without LR-HR image pairs in Section 3.2.

3.1 ARIS Plugin Module

Unlike conventional representation that regards an image as a look-up table of intensity val-
ues, we use an implicit representation that treats an image as a function mapping from spatial
coordinates to intensity, thus allows to continuously scale the image to arbitrary resolution
by simply changing the granularity of its spatial coordinates. Speci�cally, we adopt a vari-
ant of transformer architecture for our ARIS plugin, with the normalised spatial coordinates
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asquery , iteratively attending the visual feature of the low-resolution image, to aggregate
both local and global information, and eventually decode to the image of desired resolution.

As shown in Figure 1(c), the ARIS plugin module has two components, consisting of
transformer encoder and transformer decoder respectively. Speci�cally, the transformer en-
coder aims to globally aggregate the local visual features from low-resolution images, while
the transformer decoder resembles the implicit representation for image, mapping coordi-
nates to visual features for decoding later.

3.1.1 Transformer Encoder

Given the visual feature from the encoder of a baseline SR network,i.e.F ENC(XLR), we use
transformer encoder withL layers to aggregate information globally:

F LR = F TRANSFORMER-E(F ENC(XLR) + PE); (2)

whereF TRANSFORMER-E(�) refers to the transformer encoder. To maintain the spatial infor-
mation, learnable position encodings (PE) are added to the visual features, and then passed
into the transformer as a sequence of tokens. As a consequence, features computed from the

transformer encoder is denoted asFLR 2 R
HW
p2 � C

, with p;C referring to the patch size used
to generate tokens, and feature channels respectively.

3.1.2 Transformer Decoder for Implicit Image Representation

Here, we parametrize the image as a mapping from image coordinates to visual features,
by adopting a module with multiple transformer decoder layers. In detail, we start by con-
structing a normalised spatial grid based on the desired scaling factor, and project them into
high-dimensional vectors with the Fourier encoding [40],QSR= F FOURIER([x;y]), where[�; �]
indicates concatenation of spatial coordinates,x = [ � 1;a � 1;2a � 1; : : : ;1], y = [ � 1;b �
1;2b � 1; : : : ;1] refer to the spatial coordinates respectively, with gaps computed asa =
gH� 1
2pt , b = gW� 1

2pt , wheret refers to the upsampling scale of baseline SR network. As a

result, QSR 2 R
gH
pt � gW

pt � C denotes the Fourier encoded spatial coordinates for the desired
super-resolution image.Note that, asg can be any continuous value, the granularity of the
spatial coordinates can thus be varying accordingly.

Next, we convert the spatial coordinates map into a sequence of vectors and used it as
Query into a stack of transformer decoder layers (F TRANSFORMER-D(�)),

FSR = F TRANSFORMER-D(WQ �QSR; WK � F LR; WV � F LR) (3)

whereWK ;WV refer to the learnable parameters that project the visual features toKey and
Value , FSR refers to the enriched visual feature map that can be decoded into desired super-
resolution image with decoder,i.e., Yg

SR = F DEC(F SR).

Discussion. To summarise, the transformer-based ARIS plugin module can generally adapt
to any existing SR models, enabling them to achieve arbitrary resolution image scaling.
ARIS can globally aggregate the visual feature extracted by the baseline SR network using
transformer encoder and further map the feature and spatial coordinates to a visual repre-
sentation of desired super-resolution image using transformer decoder, similar to implicit
representation for images.
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Figure 2. Self-supervised training strategy with consistency constraints.The �rst training setting
is to downsample the SR image (Yks

SR) to the same resolution as available HR image (X k
HR), and thus

can supervise, called down-consistency training. The second training setting is to upsample the HR
image (X k

HR) to the same resolution as the SR image (Yks
SR) and then supervise usingL1 loss, called

up-consistency training.

3.2 Self-supervised Training Strategy with Consistency Constraints

It is the common practise in arbitrary scale super-resolution (e.g., LIIF [6]), where the
scales are divided into in-distribution and out-of-distribution. In our case, the� 2, � 3 and
� 4 are in-distribution (groundtruth LR-HR pairs are available in the given datasetDtrain),
� 6 and� 8 are considered as out-of-distribution (no groundtruth LR-HR pairs). For in-
distribution scales, we can train our SR model using the traditional supervision method,i.e.,
L pair = L1(Yk

SR;X k
HR) wherek 2 f 2;3;4g refers to the scale factor,Yk

SR = F (XLR;k) refers
to the generated super-resolution image. For the out-of-distribution scales, in order to train
the model beyond the resolution limitation,i.e. the resolution of dataset images might be
infeasible for generating LR images for large scales, for example, if an HR image is only
of resolution 128� 128, the size of the generated LR image for� 8 is 16� 16 at maximum,
thus it will be infeasible to train the model for� 8 scaling 32� 32 image, we adopt a self-
supervised training scheme that exploits consistency constraints.

As shown in Figure 2, our proposed training scheme includes two settings,i.e., down-
consistency training and up-consistency training. Speci�cally, we �rst use our arbitrary-
scale SR network to scale the low-resolution image byk� s times,i.e., Yks

SR = F (XLR;k � s).
For down-consistency training, we downsample the generated super-resolution image to the
same resolution as available high-resolution image (X k

HR), and useL1 loss as the objective
for optimisation. The down-consistency training method can be formulated as:

L down-consistency= jF BICUBIC(Yks
SR;s) �X k

HRj1 (4)

whereF BICUBIC(�;s) refers to the simple bicubic downsampling, with a factor ofs.
For up-consistency training, we use our arbitrary-scale SR network to upsample high-

resolution image (X k
HR) to the same resolution as the generated super-resolution image (Yks

SR)
so that we can supervise. It can be formulated as:

L up-consistency= jY ks
SR� F (X k

HR;s)j1 (5)

Note that, we useL pair, L down-consistencyandL up-consistencytogether to train the arbitrary-scale
SR network for both seen and unseen scales.


