SHANGHAI JIAO TONG A Simple Plugin for Transforming Images to Arbitrary Scales

Qinye Zhou*, Ziyi Li*, Weidi Xie, Xiaoyun Zhang, Yanfeng Wang, Ya Zhang

* Indicates equal contribution

Why We Design a Plugin for Transforming Images to Arbitrary Scales?

- Most image super-resolution (SR) methods are specialized for one scale, i.e., different models should be trained for different scales, limiting practical use in real-world applications.
- Why do not we use a single model for arbitrary-scale superresolution?
- Existing works on arbitrary-scale super-resolution are achieved by a specific network, ignoring the existing powerful SR methods specialized for one scale.
- Why do not we use a simple plugin to augment the ability of powerful SR methods specialized for one scale towards Arbitrary Resolution Image Scaling and maintain their original well performance on fixed scale factor?

Our Contribution:

UNIVERSITY

- We propose a transformer-based plugin module, called ARIS, which resembles an implicit representation for images and can be inserted into any existing super-resolution models, conveniently augmenting their ability to upsample the image with arbitrary scale;
- We introduce a novel self-supervised training scheme, that exploits consistency constraints to train our ARIS plugin module towards out-of-distribution scales, i.e., LR-HR image pairs are unavailable;
- The ARIS plugin module is orthogonal to the development of new super-resolution architectures, we insert it into several strong models published recently, the resulting models outperform the any-scale super-resolution models on various benchmarks

Project page: https://lipurple.github.io/ARIS_Webpage/

- Our proposed ARIS plugin can be inserted into any existing baseline SR network (a), to obtain arbitrary-scale SR network (b), conveniently augmenting the baseline SR models' ability towards Arbitrary Resolution Image Scaling.
- The transformer-based ARIS plugin, which uses spatial coordinates as query, iteratively attend the low-resolution image feature through cross-attention, and output visual feature for the queried spatial location, resembling an implicit representation for images.

For training the model on out-of-distribution scales beyond the resolution limitation, we adopt a selfsupervised training scheme that exploits consistency constraints, which consists of

down-consistency training: downsample the SR image to the same resolution as available HR image

> up-consistency training: upsample the HR image to the same resolution as the SR image

HAT-ARIS **outperforms all** existing arbitrary-scale SR models, **for both in and out-distribution scales**, validating the effectiveness of ARIS.

The IPT-ARIS, SwinIR-ARIS, and HAT-ARIS achieve **comparable performance** to their corresponding baseline networks on in-distribution scale factors.

Self-supervised Training Strategy with Consistency Constraints