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Abstract

Many unsupervised domain adaptation (UDA) methods have been proposed to bridge
the domain gap by utilizing domain invariant information. Most approaches have chosen
depth as such information and achieved remarkable successes. Despite their effective-
ness, using depth as domain invariant information in UDA tasks may lead to multiple
issues, such as excessively high extraction costs and difficulties in achieving a reliable
prediction quality. As a result, we introduce Edge Learning based Domain Adaptation
(ELDA), a framework which incorporates edge information into its training process to
serve as a type of domain invariant information. In our experiments, we quantitatively
and qualitatively demonstrate that the incorporation of edge information is indeed ben-
eficial and effective, and enables ELDA to outperform the contemporary state-of-the-art
methods on two commonly adopted benchmarks for semantic segmentation based UDA
tasks. In addition, we show that ELDA is able to better separate the feature distributions
of different classes. We further provide ablation analysis to justify our design decisions.
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It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Supervised learning for semantic segmentation has achieved unprecedented successes in the
past few years. Albeit effective, training a semantic segmentation model in a supervised man-
ner requires pixel-level labeling, which is often prohibitively expensive and time-consuming.
Being aware of these undesirable drawbacks, recent studies have been attempting to make
use of the existing labeled datasets or simulated environments to train semantic segmentation
models, and then adapt the models to certain label-less targeted domains. This category of
research direction is often referred to as semantic segmentation based UDA in the computer
vision community. A number of approaches have been explored to tackle this challenge, in-
cluding adversarial training [28, 30, 33, 34], anchoring [19, 22, 37, 38], and pseudo labeling
(PL) [20, 27, 41, 42], and have achieved remarkable adaptation performance. However, they
rely solely on the semantic labels in the source domain and the raw input data in the target
domain, which limits their performance and thus leaves room for further improvements.

In light of these shortcomings, another branch of work has incorporated domain invariant
information into their training processes to help bridge the domain gaps confronted by them.
Domain invariant information possess a favorable property: the concept it represents is gen-
eral across different domains. This property makes it highly desirable for UDA tasks as it
is robust against domain gaps. As a result, such property has inspired researchers to explore
the usage of domain invariant information in their UDA methods, in which it is oftentimes
embedded into the training objectives of some auxiliary tasks. A commonly adopted type of
domain invariant information is depth, which contains clues relating to the distance of the
surfaces of scene objects from a viewpoint. A number of methods have been proposed to
leverage depth information to help shrink the domain gap [6, 16, 25, 31]. The authors in [32]
further utilized self-supervised learning (SSL) to retrieve depth information, with an aim of
assisting semantic segmentation based UDA tasks, and achieved remarkable performance.

Unfortunately, the methods that utilized SSL to retrieve depth information have two cru-
cial constraints: First, the computational cost associated with training an accurate auxiliary
SSL-based depth estimation model is often expensive. A few researchers [32] even employed
two separate depth estimation models in both the source and the target domains to ensure the
quality of the generated depth estimation. This worsens the computational burden incurred,
and makes such methods less suitable for real world applications. Second, since SSL-based
models have no access to ground truth labels, their performance is not comparable to phys-
ical sensors (e.g., lidar, stereo camera, etc.) or supervised models [11] in terms of accuracy.
In other words, their predictions might deviate from the ground truths, and hence might bring
negative impacts on the training process of the semantic segmentation based UDA methods.

Being aware of the problems associated with using SSL based depth estimation to assist
in the training processes of UDA models, we propose to replace it with edges, which is also
a type of domain invariant information. The benefits are twofold. First, the computational
costs of extracting edges from an input image is substantially lower than those of extracting
a depth map from the same image using SSL. Specifically, edges in an image can be obtained
by performing convolution using certain fixed kernels over an input image in one pass [15],
while the extraction of a depth map usually requires training and inferencing of a sophisti-
cated depth model [11]. Second, the quality of edges is typically much more consistent than
that of depth maps, as depth estimation using only RGB images is an ill-posed problem [9],
and is susceptible to the influences of noises, model architectures, and data distributions. On
the contrary, edges are relatively consistent, and less likely to deviate from the ground truth.
Fig. 1 depicts a motivational example of such characteristics, in which the object boundaries
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Figure 1: An example that depicts the differences between edges and depth maps extracted
by [11] on the selected images from the GTA5 dataset [23] without the use of any ground
truth labels. For the depth maps, nearer surfaces are brighter, while farther ones are darker.

are better captured in the extracted edge maps. In contrast, the depth maps are noisy and
the object boundaries are relatively blurred. The availability of such a high quality boundary
information thus offers a promising way to enable a model to better adapt to a target domain.

In order to validate the aforementioned motivation, and take full advantage of the high
quality edge information, we propose Edge Learning based Domain Adaptation, abbreviated
as ELDA. ELDA utilizes edges as the domain invariant information by incorporating edge
extraction into its training process as an auxiliary task. The experimental results show that
without resorting to ensemble distillation methods [2, 36, 37] or transformer based archi-
tectures [13], ELDA is able to achieve the state-of-the-art performance on two commonly
adopted benchmarks [7, 23, 24]. The contributions of this work are summarized as follows:

• We introduce the use of edge information as an auxiliary task for semantic segmen-
tation based UDA, and develop an effective framework named ELDA, to take full
advantage of the valuable edge information embedded in the images of both domains.

• We validate ELDA on two commonly adopted benchmarks quantitatively and qualita-
tively, and show that it is able to achieve superior performance to the previous methods.

• We demonstrate that by incorporating edge information into semantic segmentation
based UDA, ELDA can capture fine-grained features in an unlabeled target domain.

2 Related Work

2.1 Unsupervised Domain Adaptation for Semantic Segmentation
A number of UDA methods have been proposed in an attempt to bridge the discrepancies
between different domains. One category of these works adopted adversarial training pro-
cess to learn representations of their target domains [28, 30, 31, 33, 34]. These frameworks
often consist of a generator and a discriminator trained against each other in order to min-
imize the domain gap, and have shown significant improvements over those trained in the
source domains only without the use of any adaptation technique. Another line of work
has focused on self-training and data augmentation measures to tackle UDA problems. For
those utilizing self-training, the concentration was mainly on preventing overfitting by us-
ing regularization [40, 42] or class-balancing [20, 41] when minimizing uncertainty in their
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target domains. The authors in [27] extended the concept of self-training and proposed a
data augmentation technique. It fine-tunes a model with mixed labels generated by combin-
ing ground truth annotations from a source domain and pseudo labels from a target domain.
Recent researchers further employed ensemble learning to deal with the above challenge [2].

2.2 Auxiliary Tasks in Semantic Segmentation based UDA Methods

As mentioned in Section 1, a few recent researchers have turned their attention to incorporat-
ing domain invariant features into the training processes of their UDA methods. To achieve
this objective, a commonly adopted method is to introduce them through auxiliary tasks.
Among these tasks, depth estimation is the most widely used one. The main incentive behind
this is that geometric and semantic information are highly correlated [6, 12, 16, 25, 31, 32].
This concept is first introduced in SPIGAN [16], which uses synthetic semantic segmen-
tation and depth information as additional means of regularization for their style transfer
model. The authors in DADA [31] proposed to shrink the domain gap by fusing segmenta-
tion and depth maps together during the adversarial training process. Moreover, CorDA [32]
explicitly exploits a segmentation path and a depth estimation path in their UDA framework,
where the latter path serves as an auxiliary task. These two paths are interleaved, in which
the embeddings from them are fused together using attention layers such that two paths can
mutually benefit from each other. In addition, CorDA leverages the prediction discrepan-
cies from two depth decoders to assist in pseudo-label refinement for the segmentation path.
Furthermore, GUDA [12] leverages more auxiliary paths, including depth estimation, sur-
face normal, as well as self-supervised photometric loss, in their UDA model. However, the
aforementioned methods require additional depth estimation models trained based on certain
self-supervised learning approaches and may suffer from the issues mentioned in Section 1.

2.3 Usage of Edge Information in Other Computer Vision Domains

Edge detection has been utilized in a wide variety of computer vision research domains such
as semantic segmentation [3, 14], object detection[10, 17], facial recognition[5], and repre-
sentation learning [4]. Edges are low-level representations extracted from images that are
able to reflect important information about the discontinuities in depth, surface orientation,
material properties, as well as scene illumination in images. Besides its abundance in seman-
tic information, edges from an image can be easily extracted using conventional computer
vision approaches such as Sobel [15] and Canny edge extraction algorithms [1]. These algo-
rithms are efficient and straightforward and do not require the use of any learnable parameter.
Therefore they are considered readily available from almost all image domains, and meet the
characteristics of domain invariant features described in Section 1. Despite these advan-
tages, the use of edge information has not been explored in semantic segmentation based
UDA tasks. In this work, we show that edge information can be used as a type of domain
invariant feature and can indeed help boost the performance of the proposed ELDA model.
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Figure 2: An illustration of the proposed ELDA framework.

3 Methodology

3.1 Problem Formulation
In UDA tasks, a model has access to a source dataset Xs = {x1

s , ...,x
N
s }, their corresponding

labels Ys = {y1
s , ...,y

N
s }, and a target dataset Xt = {x1

t , ...,x
M
t }, where N and M denote the

number of instances from the source and target domains, respectively. Specifically, a tuple
(xs,ys) represents an image-label pair from the source domain, and xt represents a target
domain image. The training objective is to train a model such that its predictions can best
estimate the ground truth labels in the target domain. In other words, the mean intersection-
over-union (mIoU) of the predictions from the model should be maximized. For the detailed
notation used in our work, please refer to the notation table in the supplementary material.

3.2 Overview of the Proposed ELDA Framework
Fig. 2 illustrates an overview of the proposed ELDA framework. First, an input image from
either the source domain (i.e., xs ∈ Xs) or the target domain (i.e., xt ∈ Xt ) is first fed into a
shared domain invariant encoder (SDI-Enc) to obtain the shared latent feature embedding
( fshared). Subsequently, fshared is passed through two separate task specific branches (TSBs),
to generate the task specific features, i.e., the edge ( fedge) and the semantic segmentation
( fseg) features, and the initial predictions of edges (êinit

s or êinit
t ) as well as semantic segmen-

tation (ŷinit
s or ŷinit

t ). Both fedge and fseg are then propagated through a correlation module
(CM) to exchange information between fedge and fseg. Then, the outputs of CM are for-
warded to two distinct decoders to generate the final output predictions of edges (êfinal

s or
êfinal

t ) and semantic segmentation (ŷfinal
s or ŷfinal

t ), respectively, where subscripts s and t de-
note the source and the target domains. The edge detection loss Ledge and the segmentation
loss Lseg are computed to update the model’s weights. In the following subsections, we ex-
plain the components of ELDA. In Section 3.3 we elaborate on the details of SDI-Enc, TSBs,
and CM. In Section 3.4, we describe the formulations of the loss functions Ledge and Lseg.

3.3 Architecture Components of the ELDA Framework
3.3.1 Shared Domain Invariant Encoder (SDI-Enc)

In auxiliary task learning, shared encoders are usually adopted to extract common features
so as to enhance performance and reduce inference cost [26]. ELDA employs the shared
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encoder structure in [32] to extract fshared for capturing both edge and segmentation features.

3.3.2 Task Specific Branch (TSB)

To enable fshared to be further interpreted into specific feature embeddings that bear edge
and semantic segmentation meanings, two separate branches of TSBs, similar to those used
in [26, 32], are utilized to generate initial edge and segmentation predictions. The two TSBs
contain their separate encoders and decoders. The encoders are in charge of encrypting
fshared into task specific features fedge and fseg, which are later fed to the CM. Meanwhile,
the decoders are employed to decode fedge and fseg in to êinit

s or êinit
t and ŷinit

s or ŷinit
t , respec-

tively, depending on the original domain of the input image, for updating SDI-Enc and the
TSBs. Please note that ê represents the edge predictions, ŷ denotes the semantic segmenta-
tion predictions, and the subscripts s and t stand for the source and the target domains.

3.3.3 Correlation Module (CM)

With an aim to communicate information between fedge and fseg, we employ a CM [8, 32]
into ELDA. Specifically, within CM, the information in fedge and fseg are first filtered with
sigmoid functions to re-weight the task specific intermediate embeddings f mid

seg and f mid
edge as:

f mid
seg = Conv( fseg), f mid

edge = Conv( fedge), (1)

f cm
seg = fseg + f mid

edge ∗Sigmoid(Conv( fedge)), (2)

f cm
edge = fedge + f mid

seg ∗Sigmoid(Conv( fseg)), (3)

where Conv(·) and Sigmoid(·) denote the convolution and sigmoid functions, and f cm
seg and

f cm
edge are the outputs of CM. CM assists in preserving the essential features from both TSBs.

3.4 Loss Function Design
3.4.1 The Loss Function for Edge Estimation (Ledge)

In ELDA, the supervision targets for edges in both the source and the target domains are gen-
erated using the Canny edge extraction algorithm [1] denoted as C(· ;σ), where σ is the pa-
rameter for controlling the smoothness of an edge map. The edge loss Ledge = Linit

edge+Lfinal
edge is

then computed between the edge predictions from ELDA and the edges generated by C(· ;σ).
Both Linit

edge and Lfinal
edge are derived by extending the DICE loss [21], as it is able to prevent im-

balance between different classes. The expressions of Linit
edge and Lfinal

edge are formulated as:

Linit
edge = (1−D(C(xs ;σ), êinit

s ))+(1−D(C(xt ;σ), êinit
t )), (4)

Lfinal
edge = (1−D(C(xs ;σ), êfinal

s ))+(1−D(C(xt ;σ), êfinal
t )), (5)

D(e, ê) =
2∑

P
i=1 eê

∑
P
i=1 e2 +∑

P
i=1 ê2

, 0≤ D≤ 1, (6)
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where P represents the number of pixels in an input image, D(·) denotes the DICE loss
operator, e ∈ {0,1} represents the edges generated by C(· ;σ), and ê ∈ [0,1] denotes the
edges predicted by ELDA. Please note that ê can be any of êinit

s , êinit
t , êfinal

s , or êfinal
t .

3.4.2 The Loss Function for Semantic Segmentation (Lseg)

In ELDA, the training targets for semantic segmentation in the source domain are the ground
truth labels, while those in the target domain are the pseudo labels generated using ELDA’s
predictions. The loss for semantic segmentation Lseg = Linit

seg+Lfinal
seg is then computed between

the predictions of ELDA and the training targets by utilizing the cross-entropy (CE) operator
CE(·) [39]. The expressions of the loss components Linit

seg and Lfinal
seg are formulated as follows:

Lfinal
seg = CE(ys, ŷfinal

s )+CE(y
′
t , ŷ

final
t ), Linit

seg = CE(ys, ŷinit
s )+CE(y

′
t , ŷ

init
t ), (7)

where CE(y, ŷ) = −∑
P
i=1 y log ŷ, y

′
t represents the pseudo-labels in the target domain, and y

denotes the segmentation labels, which can be either ys or y
′
t . Finally, ŷ denotes the predicted

segmentation maps. Please note that ŷ can be any of ŷinit
s , ŷinit

t , ŷfinal
s , or ŷfinal

t .

3.4.3 The Total Loss (Ltotal)

Based on the above derivations, the total loss can be formulated as Ltotal = Lseg + λLedge,
where λ is a balancing factor whose value is provided in the supplementary material.

4 Experimental Results

4.1 Experimental Setup
We evaluate and compare the experimental results of ELDA against the pure semantic seg-
mentation based UDA methods [18, 20, 27, 35, 37, 38, 40, 41], as well as the methods that
take advantage of additional information in the form of auxiliary tasks [6, 12, 16, 25, 31, 32].
The goal of the comparisons against [27], which is a pure semantic segmentation based UDA
method that bears a similar model architecture as ELDA, is to demonstrate that the additional
edge information incorporated into the training process of ELDA is indeed beneficial. In ad-
dition, the goal of the comparisons against [32], which is one of the methods that utilize
auxiliary tasks and is considered the state-of-the-art, is to show that edges work as well as,
or even better than depth, when it comes to designing auxiliary tasks. We evaluate ELDA
and the baselines on two commonly adopted benchmarks: GTA5 [23]→ Cityscapes [7] and
SYNTHIA [24]→ Cityscapes. The detailed setups are offered in the supplementary material.

4.2 Quantitative Results on the Benchmarks
Tables 1 and 2 compare the results of ELDA against multiple baselines. Please note that these
baselines do not include works that resort to ensemble distillation methods [2, 36, 37] or
transformer based architectures [13] for fair comparisons. We also include the performance
of ELDA trained solely in the source domains, denoted as source only, for reference. Table 1
reports the results evaluated on the GTA5→Cityscapes benchmark. By leveraging edge pre-
diction as an auxiliary task, ELDA achieves an mIoU of 57.3%, outperforming source only
by a margin of 20% mIOU. This demonstrates that the addition of edge information brings
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GTA5→ Cityscapes

Method Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIoU
Source only 70.1 18.4 66.1 12.8 17.4 22.1 30.8 16.1 79.1 14.4 71.3 57.1 23.7 77.5 29.5 37.0 4.9 29.6 31.5 37.3

Pure semantic segmentation based UDA methods
CBST[41] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

CAG-UDA[38] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
FDA[35] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.45
PIT[18] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6

Uncertainty[40] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
IAST[20] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS[27] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

ProDA*[37] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
Semantic segmentation based UDA methods using auxiliary tasks

CorDA[32] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ELDA (Ours) 94.9 64.1 88.2 35.0 44.7 40.3 47.0 54.6 88.7 47.4 88.9 67.0 31.1 90.2 53.7 56.0 0.0 41.7 55.5 57.3

Table 1: The quantitative results evaluated on the GTA5→Cityscapes UDA benchmark.
Please note that the distillation stage of ProDA [37] is removed for a fair comparison.

SYNTHIA→ Cityscapes

Method Road SideW Build Wall Fence Pole Light Sign Veg Sky Person Rider Car Bus Motor Bike mIoU
Source only 51.8 17.0 73.0 7.1 0.2 25.4 9.4 10.2 70.7 84.0 55.6 13.7 68.0 2.9 8.5 16.1 32.1

Pure semantic segmentation based UDA methods
CBST[41] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6

CAG-UDA[38] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5
PIT[18] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 44.0

Uncertainty[40] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9
IAST[20] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8
DACS[27] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3

Semantic segmentation based UDA methods using auxiliary tasks
SPIGAN[16] 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8
GIO-Ada[6] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3
DADA[31] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6
GUDA[12] 88.1 53.0 84.0 22.0 1.4 39.6 28.2 24.8 82.7 81.5 65.5 22.7 89.3 50.5 25.1 57.5 51.0
CorDA[32] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0
CTRL[25] 86.4 42.5 80.4 20.0 1.0 27.7 10.5 13.3 80.6 82.6 61.0 23.7 81.8 42.9 21.0 44.7 45.0

ELDA (Ours) 92.6 56.6 85.5 24.2 2.1 37.6 38.1 43.1 85.7 91.5 69.8 42.0 87.2 47.6 20.0 50.1 55.2

Table 2: The quantitative results evaluated on the SYNTHIA→Cityscapes UDA benchmark.

positive influences. Furthermore, ELDA indeed has an edge over DACS [27] and the current
state-of-the-art CorDA [32] by 5.2% mIoU and 0.7% mIoU, respectively. Table 2 shows the
results evaluated on the SYNTHIA→Cityscapes benchmark. The results display a similar
trend as those on the GTA5→Cityscapes benchmark, in which ELDA is able to reach the
state-of-the-art performance of 55.2% mIOU, outperforming all the baselines. Please note
that in this benchmark, the depth ground truth labels in the source domain are provided, and
are leveraged by a few baselines [6, 12, 16, 25, 31, 32] in their auxiliary tasks. In contrast,
ELDA is able to achieve superior performance without the use of any extra labeled data.

4.3 Qualitative Results on the GTA5→Cityscapes benchmark
Fig. 3 presents the predictions from source only, CorDA [32], and ELDA on some images se-
lected from the GTA5→Cityscapes benchmark. It is observed that predictions from ELDA
are of better quality as they are less fragmented and have clearer boundaries as compared
to those predicted by source only and CorDA. For example, ELDA is able to clearly mark
the boundaries between sidewalks and roads, while CorDA and source only tend to produce
uncertain and sub-optimal boundaries. Fig. 4 further shows how ELDA is able to produce
impressive details in its predictions through approximating the training target of edges gen-
erated by C(· ;σ). The incorporation of high quality edge information allows ELDA to even
capture small and subtle features of the image, like the hollowness at the center of bike
wheels. In contrast, the predictions from CorDA fail to capture a similar degree of details,
which is due to the use of relatively ambiguous depth information during its training process.
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Figure 3: A comparison of the semantic segmentation predictions from different methods.

Figure 4: A comparison of the predictions evaluated by ELDA and CorDA.

4.4 Ablation Study
As described in Section 3, ELDA is made up of multiple key components such as SDI-Enc,
TSB, and CM. To examine how each of them contributes to the overall performance, we com-
pare the performances between (1) ELDA, (2) ELDA without CM (denoted as ELDA (SDI-
Enc+TSB)), and (3) ELDA without SDI-Enc, TSB, and CM (which is essentially the DACS
baseline [27]). The experimental results presented in Table 3 show that with the addition of
each component, the performance grows, indicating that the adoption of these components
in ELDA indeed has positive performance impacts and thus validates our design choices.

4.5 Visualization of the Features in the Target Domain
To verify that ELDA is able to learn a more discriminative and thus descriptive feature space,
we visualize the target domain features of source only, DACS, CorDA, and ELDA in Fig. 5
using t-SNE [29]. Please note that for ease of viewing and observation, we only display
the target domain features of several semantic classes, including sidewalk, fence, car, truck,
and bicycle. It is observed that the target domain features captured by source only does not
have clear boundaries between different classes, reflecting its sub-optimal performance in
the target domain. In contrast, the features captured by ELDA, DACS [27], and CorDA [32]
display clearer boundaries, translating to their superior performance in the target domain.
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Method Edge Aux. Correlation Module mIoU

DACS [27] 52.1

ELDA (SDI-Enc+TSB) 4 55.5

ELDA (SDI-Enc+TSB+CM) 4 4 57.3

Table 3: An ablation analysis for validating the effectiveness of each component.

Figure 5: A visualization of the feature space using t-SNE for four semantic classes.

5 Conclusion
In this work, we proposed an effective framework, called ELDA, for performing semantic
segmentation based UDA. ELDA utilizes the highly available and high quality edge infor-
mation as the domain invariant information by incorporating edge extraction into its training
process as an auxiliary task. To validate the performance of ELDA, we evaluated it against
a number of baselines on two commonly adopted benchmarks, and quantitatively and qual-
itatively showed that ELDA is able to achieve the state-of-the-art performance as compared
to the baselines. In addition, we presented an ablation study and feature analysis in the tar-
get domain to validate our design choices. As the proposed framework is able to leverage
precious edge information to enhance its adaptation performance, it thus offers a different
direction to further enhance the performance of semantic segmentation based UDA models.
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