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Abstract
We propose a novel framework for 3D hand shape reconstruction and hand-object

grasp optimization from a single RGB image. The representation of hand-object contact
regions is critical for accurate reconstructions. Instead of approximating the contact re-
gions with sparse points, as in previous works, we propose a dense representation in the
form of a UV coordinate map. Furthermore, we introduce inference-time optimization
to fine-tune the grasp and improve interactions between the hand and the object. Our
pipeline increases hand shape reconstruction accuracy and produces a vibrant hand tex-
ture. Experiments on datasets such as Ho3D, FreiHAND, and DexYCB reveal that our
proposed method outperforms the state-of-the-art.

1 Introduction
3D reconstruction of hand-object interactions is critical for object grasping in augmented
and virtual reality (AR/VR) applications [22, 41, 42] We consider the problem of estimating
a 3D hand shape when the hand interacts with a known object with a given 6D pose. This
set-up lends itself well to AR/VR settings where the hand interacts with a predefined object,
perhaps with markers to facilitate the object pose estimation. Such a setting is common,
although the majority of previous works [23, 25, 26] consider 3D point clouds as input,
while we handle the more difficult case of monocular RGB inputs. Additionally, the previous
works [9, 10, 23, 25, 26, 39] are singularly focused on reconstructing feasible hand-object
interactions. They aim to produce hand meshes with minimal penetration to the 3D object
without regard for the accuracy of the 3D hand pose. We take on the additional challenge of
balancing realistic hand-object interactions with accurate 3D hand poses.

Representation-wise, previous hand-object 3D reconstruction works [2, 27, 40, 46] pre-
dominantly with the MANO model [37]. MANO is convenient to use, but its accuracy is

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Huang, Tan, Liu, and Yuan} 2020

Citation
Citation
{Wan, Probst, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, and Yao} 2020

Citation
Citation
{Yang and Yao} 2019

Citation
Citation
{Jiang, Liu, Wang, and Wang} 2021

Citation
Citation
{Karunratanakul, Yang, Zhang, Black, Muandet, and Tang} 2020

Citation
Citation
{Karunratanakul, Spurr, Fan, Hilliges, and Tang} 2021

Citation
Citation
{Christen, Kocabas, Aksan, Hwangbo, Song, and Hilliges} 2021

Citation
Citation
{Christen, Kocabas, Aksan, Hwangbo, Song, and Hilliges} 2022

Citation
Citation
{Jiang, Liu, Wang, and Wang} 2021

Citation
Citation
{Karunratanakul, Yang, Zhang, Black, Muandet, and Tang} 2020

Citation
Citation
{Karunratanakul, Spurr, Fan, Hilliges, and Tang} 2021

Citation
Citation
{Taheri, Ghorbani, Black, and Tzionas} 2020

Citation
Citation
{Boukhayma, Bem, and Torr} 2019

Citation
Citation
{Khamis, Taylor, Shotton, Keskin, Izadi, and Fitzgibbon} 2015

Citation
Citation
{Tzionas, Ballan, Srikantha, Aponte, Pollefeys, and Gall} 2016

Citation
Citation
{Zimmermann, Ceylan, Yang, Russell, Argus, and Brox} 2019

Citation
Citation
{Romero, Tzionas, and Black} 2017



2 Z. YU ET AL.: UV-BASED 3D HAND-OBJECT RECONSTRUCTION

limited because it cannot represent direct correspondences between the RGB input and the
hand surface. This work considers dense representations and, in particular, focuses on UV
coordinate maps. UV maps are ideal as they establish dense correspondences between 3D
surfaces and 2D images and work well in representing the 3D human body and face [14, 44].

Working with a UV coordinate map has a natural advantage in that we can adopt stan-
dard image-based CNN architectures. The CNN captures the pixels’ spatial relationships
to aid the 3D modelling while remaining fully convolutional. UV coordinate maps can be
easily augmented with additional corresponding information, such as surface texture and re-
gions of object contact. This creates a seamless connection between the 3D hand shape, its
appearance, and its interactions with objects in a single representation space (see Fig. 1a).
To that end, we propose an RGB2UV network that simultaneously estimates the hand UV
coordinates, hand texture map, and hand contact mask.

The hand contact mask is a key novelty of our work. We propose a binary UV contact
mask (see Fig. 1b-f) that marks contact regions between the hand surface and the interacting
object surfaces. To our knowledge, the contact mask is the first dense representation of hand-
object contact. Previous methods [19, 43] work sparsely on a per-vertex or per-point basis
and have an obvious efficiency-accuracy trade-off. The more vertices or points considered,
the more accurate the contact modelling and the higher the computational price. Working in
the UV space allows dense contact modelling and improves reconstruction accuracy while
remaining efficient.

Normally, accurate hand surface reconstructions in isolation cannot guarantee realistic
hand-object interactions; ensuring realistic interactions in vice-versa may result in inaccurate
hand reconstructions [19, 20, 31]. The main reason is that the hand and object models
(MANO [37], YCB [4]) are all rigid. The rigid assumption is too strong at the contact
points, and leads to one mesh penetrating the other [23, 43], even for ground truth poses. To
mitigate these errors, we propose an additional optimization-based refinement procedure to
improve the overall grasp. The optimization is performed only during inference and reduces
the distances from a hand surface that either penetrates or does not make contact with the
object surface. This grasp optimization step significantly improves the feasibility of the
hand-object interaction while ensuring accurate hand poses.

Our contributions are summarized as follows: (1) We propose a UV-map-based pipeline
for 3D hand reconstruction that simultaneously estimates UV coordinates, hand texture, and
contact maps in UV space. (2) Our model is the first to explore dense representations to
capture contact regions for hand-object interaction. (3) Our grasp optimization refinement
procedure yields more realistic and accurate 3D reconstructions of hand-object interactions.
(4) Our model achieves state-of-the-art performance on FreiHAND, Ho3D and DexYCB
hand-object reconstruction benchmarks.

2 Related Works
Face, Body and Hand Surface Reconstruction. A popular way to represent human 3D
surfaces is via a 3D mesh. Previous works estimate mesh vertices either directly [8, 15, 29,
33, 35, 41], or indirectly [2, 28, 46] through a parametric model like SMPL [32] for the body,
3DMM [1] for the face, and MANO [37] for the hand. Parametric models are convenient
but cannot provide direct correspondences between the input images and the 3D surface. As
such, we learn a dense surface as a UV coordinate map. We are inspired by the success of
recent UV works for the human body [16, 45], face [13, 24, 30], and hand [6, 41]. To the
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Figure 1: a) We use UV coordinate map P as a dense representation of hand mesh V , and
train networks to directly generate P, contact mask Mcon and texture map T from RGB image
I; we then achieve a 3D reconstruction of the hand-object interaction or just the hand. Our
method. b) Generation of the ground truth UV maps (a-c) and contact mask (d-f).

best of our knowledge, our work is the first to explore the use of UV coordinate maps in
modelling hand-object interactions and capturing the contact regions.

Texture Learning on Hand Surfaces. Shading and texture cues are often leveraged to
solve the self-occlusion problem for hand tracking [11, 12]. Recently, [7] verified that texture
modelling helps with the self-supervised learning of shape models. Instead of relying on a
parametric texture model [34], we apply a UV texture map. UV texture maps are commonly
used to model the surface texture of the face [13, 24, 30] and, more recently, the human
body [45]. We naturally extend UV texture maps for hand-object interactions.

Hand-Object Interactions. Various contact losses have been proposed [19, 21, 43]
to ensure feasible hand-object interactions. Examples such as repulsion loss and attraction
loss ensure that the hand makes contact with the object but avoids actual surface penetration.
Contact regions, however, are modeled sparsely. Contact points are sparse and selected either
statistically [20], or based on hand vertices closest to the object [31]. These methods have
an accuracy-efficiency trade-off hinging on the number of considered vertices. In contrast,
our UV contact mask establishes a dense correspondence between the contact regions and
the local image features. It is both accurate and efficient. Our work is the first to explore a
joint position, texture and contact-region UV representation for hand-object interactions.

3 Method
Our method has two components: the RGB2UV network and grasp optimization (see Fig. 2).
The RGB2UV network (Sec. 3.1 and 3.2) takes as input an RGB image of a hand-object
interaction and outputs a hand UV mask and contact mask. The grasp optimization (Sec. 3.3)
adjusts the mesh vertices to refine the hand grasp and reduces penetrations.

3.1 Ground Truth UV, Contact Mask & Texture
UV Coordinate Map. Suppose we are given a 3D hand surface in the form of a 3D mesh
V and an accompanying RGB image I (see Fig. 1 a). The hand mesh V (xV )∈R778×3 stores
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Figure 2: Overview of a) RGB2UV and b) GraspVAE. RGB2UV takes as input an image
and outputs the hand contact mask, UV coordinate map, and texture map. GraspVAE further
refines the predicted UV coordinate map by conditioning on the interacting object.

the 3D position xV = (x,y,z) ∈ R3 of the 778 vertices in the camera coordinate space. The
image I(xI) ∈ RHI×WI×3 records the RGB values of each pixel xI = (u,v) ∈ RHI×WI in the
image plane. I can be considered a projection of V into 2D space, with the mapping

(u,v,d) = T ((x,y,z),c), (1)

where T (xV ,c) is a transformation that can project a vertex at (x,y,z) into (u,v,d) in the
image plane with camera parameters c. Here, d denotes the distance from the camera to
the image plane. Because I is on the image plane, it only reveals the vertices closest to the
camera; we thus consider the vertical distance d from the camera to the vertex (see Fig. 1
b-a), and represent each vertex uniquely with (u,v,d).

To represent all the hand vertices, even those not seen in I, in one 2D plane, we unwrap
the MANO mesh with MANO’s provided UV unfolding template (see Fig. 1 b-b) [37]) to
arrive at a UV coordinate map P with UV coordinates xP ∈ RHP×WP×3, where

P(xP) = (u,v,d). (2)

Mapping only the vertices V onto the UV map results in a sparse coordinate map. To generate
a dense UV representation P (Fig. 1 b-c), we interpolate values on each triangular mesh face
from neighbouring vertices. Given (u,v,d), the corresponding 3D coordinate is given by the
T −1 is the inverse transformation of T from Eq. 2:

(x,y,z) = T −1((u,v,d),c). (3)

Contact Mask. Based on P, we propose a binary contact mask Mcon ∈ RHP×WP to indicate
the contact region in hand-object interactions. Like [17], contact vertices are defined as the
vertices within 4 mm to the grasped object. We first locate contact vertices xV (Fig. 1 b-e)
and their corresponding points xP in P with Eq. 1 and Eq. 2. The contact mask is defined as:

Mcon(xP) =

{
0, if dist(v,VO)> 4 mm;
1, if dist(v,VO)<= 4 mm.

(4)

Similar to P, direct mapping from V to Mcon generates a sparse representation. For every
triangular plane in V , we interpolate all points inside the plane as a contact region if the three
vertices are contact vertices to achieve a dense representation of Mcon (see Fig. 1 b-f).
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Texture. The UV coordinates P also conveniently establish a correspondence between the
mesh vertices and texture information. The texture map T ∈ RHP×WP×3 gives information
on hand appearance. For every point xP in T , similar to Eq. 2, we obtain the texture map:
T (xP) = I(u,v). With Eq. 3, the texture of the vertices in the hand mesh can be tracked in T .

3.2 UV Estimation from an RGB Image

The RGB2UV network, (P̂,M̂con,T ) = RGB2UV (I), estimates the UV coordinate map P̂,
contact mask M̂con, and texture map T from an input image I. With prepared data tuples
(I,P,Mcon), as described in Sec. 3.1, the network can be trained in a supervised way. Sim-
ilar to previous works [6, 44, 45], we use a U-Net style encoder-decoder with a symmetric
ResNet50 and skip connections between the corresponding encoder and decoder layers.

Our network features three decoders: a hand UV coordinate map decoder, a contact mask
decoder, and a UV texture decoder (see Fig 2 a). The encoder and three decoders are trained
jointly with five losses:

LRGB2UV = LP +Lgrad +λ1LMcon +LV +λ2Ltexture (5)

UV Coordinate Map Decoder. This decoder is learned with the hand UV coordinate map
loss LP, hand UV gradient loss Lgrad. These losses are L1 terms between the ground truth
and the predicted UV coordinate maps P and P̂, and their respective gradients ∇P and ∇P̂:

LP = |P− P̂| ·M and Lgrad = |∇P−∇P̂| ·M, (6)

where M is a mask in the UV space indicating the entire hand region. M is applied to con-
strain the consideration of the UV coordinate map and their gradients to only valid regions
on the hand’s surface in P̂ and ∇P̂.
Contact Mask Decoder. This decoder is learned with the L1 contact mask loss LMcon be-
tween the ground truth and predicted contact mask Mcon and M̂con respectively: LMcon =
|Mcon − M̂con|. To ensure correctness in the hand pose represented by the coordinate map
and contact mask decoders, we add an additional mesh vertex loss LV . The hand mesh V
implicitly represents the pose of the hand, so a loss between ground truth V and estimated V̂
improves the accuracy of the estimated pose. The pose loss LV is defined as: LV = |V − V̂ |,
where V represents ground truth hand mesh vertices and V̂ is sampled from P̂.
Texture Decoder. As there is no ground truth for UV texture, we apply self-supervised
training to estimate the UV texture map. With given camera parameters c, the ground truth
mesh vertices V can be projected into the uv plane to obtain a view-specific hand silhouette
Sgt via a differentiable renderer1. The hand region in RGB image I can be isolated with
I · Sgt by applying Sgt as a mask. On the other hand, we also render the hand image Ire
with the estimated UV coordinate and texture map, i.e. P̂ and T . The texture decoder can
then be trained by minimizing the distance between Ire and I · Sgt. We apply a photometric
consistency loss Ltexture [7] for training, which consists of an RGB pixel loss term Lpixel and
a structure similarity loss LSSIM based on the structural similarity index [3] SSIM:

Ltexture = Lpixel +λ3LSSIM, Lpixel = |I ·Sgt − Ire|,and LSSIM = 1−SSIM(I ·Sgt, Ire). (7)

1We use the built-in renderer from the pytorch3D library [36].

Citation
Citation
{Chen, Chen, Yang, Wu, Li, Xia, and Tan} 2021{}

Citation
Citation
{Yao, Fang, Wu, Feng, and Li} 2019

Citation
Citation
{Zeng, Ouyang, Luo, Liu, and Wang} 2020

Citation
Citation
{Chen, Tu, Kang, Bao, Zhang, Zhe, Chen, and Yuan} 2021{}

Citation
Citation
{Brunet, Vrscay, and Wang} 2011

Citation
Citation
{Ravi, Reizenstein, Novotny, Gordon, Lo, Johnson, and Gkioxari} 2020



6 Z. YU ET AL.: UV-BASED 3D HAND-OBJECT RECONSTRUCTION

3.3 Grasp Optimization

The RGB2UV network is standalone and does not take any object information into consid-
eration. Even though the ground truth 6D object pose is provided in our setup, this does not
ensure feasible hand grasps or naturalistic hand-object interactions. Therefore, we introduce
a grasp optimization step for further refinement. Instead of refining the 3D hand mesh di-
rectly, which is very high-dimensional with 778 vertices, we work in a latent variable space
to reduce the dimensionality of the optimization. Specifically, we learn a conditional VAE
with an encoder En(·) and a decoder De(·), which we name GraspVAE.

During inference, the estimated UV coordinate map P̂ is encoded into a latent variable z
with GraspVAE’s En(·). The latent z is refined to z∗ through optimization to minimize the
penetrations between the object mesh and the estimated hand mesh. Finally, z∗ is decoded
with De(·) into a UV coordinate map and converted into a hand mesh. Note the optimization
happens during inference only, whereas En(·) and De(·) are learned during training.
GraspVAE is a conditional VAE with a ResNet18 encoder and three transposed convolu-
tion layers as the decoder. It is conditioned on the object vertices O (see Fig. 2 b) to esti-
mate a refined UV coordinate map Pgrasp from the estimated P̂ from the RGB2UV network,
i.e. Pgrasp = GraspVAE(P̂|O). GraspVAE is trained with the combined loss

LGrasp = LP +Lgrad +LV +λ4LKL +Lpene, where Lpene =
1

|V o
in|

∑
xV∈V o

in

dist(v,VO). (8)

Here, LKL = KL(q(z|(P̂,O))||p) is the standard Kullback-Leibler divergence loss used in
VAE models, where z represents the latent variables encoded from input (P̂,O). The term
p =N (0,E) denotes a Gaussian prior where E is an identity matrix. The term q(z|(P̂,O))
is the distribution of z, while the dist(·, ·) function estimates the closest distance between a
hand vertex xV and object vertices O. The penetration loss Lpene is applied to penalize hand
vertices xV ∈ V O

in , where V O
in represents the set of hand vertices inside the object. Existing

works [19] identify V O
in from the entire hand mesh, which is computationally inefficient. Our

contact mask restricts the search area and decreases the processing time. For more details on
training a conditional VAE, we refer the reader to [38].
Latent-Space Optimization. During inference, the learned GraspVAE model is used to
estimate a refined UV map. Specifically, we encode the given object vertices O and estimated
P̂, i.e. zo = En(P̂,O) and solve for an optimized z∗, with zo as initialization:

z∗ = arg min
z

LKL +Lpene. (9)

The hand UV map is generated with P∗ = De(z∗
⊕

O), where
⊕

denotes a concatenation
operation. The refined hand mesh V ∗ can then be generated from P∗ with Eqs. 2 and 3. More
details are given in the Supplementary.
Hand Only VAE. To further highlight the strengths of our grasp optimization, we introduce
a variant of GraspVAE named Hand Only VAE to refine the hand shape accuracy with.
Similar to GraspVAE, the encoder of Hand Only VAE is a ResNet18 network and the decoder
contains three transposed convolution layers. Hand Only VAE is trained with LGrasp in Eq.
8, but without Lpene. Thus, the role of Lpene in grasp optimization can be visualized from
differences between results of Hand Only VAE and GraspVAE.
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Dataset FreiHand Ho3D V2 Ho3D V3 DexYCB
Method MPJPE MPVPE MPJPE MPVPE PD SIV SD MPJPE MPVPE PD SIV SD MPJPE MPVPE PD SIV SD

Hampali[17] - - 1.07 1.06 12.34 17.28 4.02 - - - - - - - - - -
Hasson[19] 1.33 1.33 1.10 1.12 - - - - - - - - - - - - -
Hasson[20] 1.33 1.33 1.14 1.09 18.44 14.35 4.10 - - - - - - - - - -
GraspField [25] - - 1.38 1.36 14.61 14.92 3.29 - - - - - - - - - -
Li [31] - - 1.13 1.10 11.32 14.67 3.94 1.08 1.09 16.78 10.87 3.90 1.28 1.33 9.47 11.02 3.64
Chen [6] 0.72 0.74 0.99 1.01 10.25 15.38 4.05 1.25 1.24 17.87 12.56 4.02 1.23 1.13 8.64 12.38 3.36
Dataset GT - - - - - - - - - - - - 0 0 4.58 7.16 1.48
MANO CNN 1.10 1.09 1.30 1.30 17.42 14.2 4.33 1.38 1.37 18.65 14.78 4.36 1.39 1.40 16.24 15.38 4.08
MANO Fit 1.37 1.37 1.58 1.61 21.37 18.0 4.82 1.66 1.65 22.04 15.60 4.65 1.49 1.43 18.56 17.60 4.86
RGB2UV 0.75 0.78 1.08 1.07 11.33 17.24 4.24 1.22 1.23 16.72 13.50 4.27 1.20 1.19 7.03 11.02 3.28
Hand Only 0.71 0.73 1.04 1.04 9.68 14.1 3.92 1.08 1.04 13.07 11.77 3.88 1.09 1.02 6.44 9.32 2.98
Hand+Object - - 1.25 1.33 7.66 10.4 3.22 1.28 1.26 9.67 8.66 3.01 1.29 1.27 5.05 7.11 2.64

Table 1: Comparison with state-of-the-art methods. Best and Second-best Scores. Our Hand
Only achieves the best holistic performance across all comparisons. Note that the PD and
SIV of DexYCB ground truth data are non-zero due to the rigid modeling of both the hand
and the object. Combining the two inevitably results in some penetration, and this serves as
a lower bound in achievable results.

4 Experiments
Implementation Details. The Adam optimizer is applied to train all networks over 80
epochs with a batch size of 64. We start with an initial learning rate of 10−4 for all training
and lower it by a factor of 10 at the 20th, 40th and 60th epochs. After GraspVAE is trained,
we use the learning rate of 10−6 to update the latent variables until the loss difference is
lower than 10−6 for grasp optimization. The parameters are set empirically all to 1, except
for λ1,2,3 = 10, λ4 = 0.001. The VAE latent space is 128 dimensions.
Datasets. We evaluate on RGB-based hand-object benchmarks HO3D [17, 18], DexYCB [5],
and FreiHAND [46]. We compare HO3D with state-of-the-art for both v2 and v3 and report
our results through their leaderboard (v22, v33). For DexYCB dataset, we use the official
“S0” split. Since FreiHAND does not provide object models and object annotations, we
only evaluate the hand shape reconstruction on our RGB2UV network and our Hand Only
pipeline. Results are reported through their leaderboard4.
Metrics. For evaluating the hand pose and shape accuracy, we use the mean-per-joint-
position-error (MPJPE) (cm) for 3D joints and mean-per-vertex-position-error (MPVPE)
(cm) for mesh vertices. For evaluating the hand-object interaction, we measure the pene-
tration depth (PD) (mm), solid intersection volume (SIV) (cm3) [43] and Simulation Dis-
placement (SD) (cm) [19]. PD is based on the maximum distance of all hand vertices inside
the object with respect to their closet object vertices. SIV is defined as the total voxel vol-
ume of hand vertices inside the object after converting the object model into 803 voxels. SD
measures grasp stability in a simulation space that the hand is fixed and the grasped object is
subjected to gravity.

4.1 Comparison with the State-of-the-Art
Quantitative Results. Comparison with state-of-the-art results of [6, 17, 19, 20, 31] in
Table 1 are based on their released source code and default parameters. Considering only
the hand pose and shape accuracy, our Hand Only pipeline obtains the lowest MPJPE and

2https://competitions.codalab.org/competitions/22485#results
3https://competitions.codalab.org/competitions/33267#results
4https://competitions.codalab.org/competitions/21238#results
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Figure 3: Surface Results: predicted 3D hand surfaces with hand shape. For each quartet,
from left to right the columns correspond to RGB input, hand surface with ground truth ob-
ject, hand surface in camera view, and hand surface in a different view. Besides, similarities
between projected hand Ire and its ground truth are measured with the SSIM matrix. High
SSIM values indicate that our texture decoder can generate reliable textures.

MPVPE on Ho3D V3 and DexYCB. Especially on the DexYCB dataset, compared with
the latest works, our method reduces the pose error MPJPE by 10%. For hand-object in-
teraction, our Hand-Object pipeline also achieves the lowest PD, SIV and SD for Ho3D V2
and DexYCB. Comparing the results for the DexYCB dataset, our grasp results verify the
effectiveness of our pipeline.
Qualitative Results. Visualizations of our hand surfaces in Fig. 3 verify our texture learning
and grasp optimization effectiveness.Additionally, Fig. 4 compares our method to state-of-
the-art, demonstrating our improved grasp feasibility. More qualitative results can be found
in the supplementary material.
Texture Map Results. Visualizations of our results are all rendered with textures from our
texture decoder. Fig. 3 also reports appearance similarity between the projected hand Ire and
its ground truth via SSIM (higher is better). Our model can even estimate the texture for
unobserved vertices, i.e. the results of view 2, highlighting our model’s ability to general-
ize appearance. We further compare our hand texture reconstruction results with [7] in the
supplementary material and show that our reconstruction results are better.
Contact Mask Results. Fig. 6 shows predicted contact masks for DexYCB. Estimated con-
tact regions are similar to the ground truth. Our generated contact masks M̂con has an average
Intersection over Union (IoU) of 72.09%. Efficiency-wise, our contact mask is 5 times faster
than point-based methods [19, 43]. Detailed experimental results are given in the supple-
mentary material.

4.2 Ablation Study

MANO Baselines. We also compare with two simple MANO baselines in Table 1. MANO
CNN is a pipeline that regresses the MANO parameters through the differentiable MANO
layer [39, 46]. MANO Fit uses inverse-kinematics method to fit MANO parameters from
our estimated hand vertices. We outperform these baselines; especially on FreiHAND, our
method achieves significant improvements (40% over MANO CNN and MANO Fit).
GraspVAE. The impact of GraspVAE is shown in Table 1 (Hand-Only vs Hand-Object).
Grasp optimization worsens MPJPE and MPVPE but improves PD, SIV and SD because the
optimization limits penetration between the hand and object at the expense of less accurate
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Figure 4: Grasp Results: Comparison of hand-object reconstructions with state-of-the-art.
Our method yields a more feasible hand with the lowest PD, SIV and SD.

Figure 5: Grasp Optimization: Predicted hand surfaces with ground truth objects before and
after grasp optimization. Differences are highlighted in the boxes. Our grasp optimization
significantly reduces PD, SIV and SD, and yields more feasible hand-object interactions.

hand pose and shape. Fig. 5 shows examples before and after optimization. Optimization
reduces the penetration and this is verified with lower PD, SIV and SD. Furthermore, com-
pared with RGB2UV pipeline, using the Hand Only VAE refinement reduces pose errors by
nearly 10%. This reveals the efficiency of our proposed Hand Only VAE and emphasizes the
importance of refinement for predicting UV coordinate maps.

Figure 6: Contact mask results. For each sample, top-left: our predicted contact mask; top-
right: our predicted hand surface with ground truth objects; bottom-left: our contact regions
from the predicted contact mask; bottom-right: ground truth contact regions.

4.3 Limitations
In our RGB2UV pipeline, we used a silhouette of the hand projection Sgt to isolate the
hand in the RGB image I. If directly use provided object information, the object can be
removed by using an object silhouette but it would break the spatial correlation of hand-
object interaction. Therefore, without removing hand object may result in spilling over into
the hand texture results; this is especially the case when the area of the hand in the image is
very small, or there is significant occlusion from the object (see Fig. 7). These limitations
can be improved by considering multi-view information, which would exclude the extreme
viewpoints and enable a feasible hand reconstruction to be obtained.
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Figure 7: Failure cases. We are limited by only using a single view for texture rendering,
and object textures may spill over onto the hand, i.e. white and blue hand surfaces from the
object.

5 Conclusion

This work proposes a hand surface framework for estimating hand-object interaction from
RGB images. We explored UV coordinate maps for hand-object surface modelling and de-
signed the first dense representation to model contact regions. Additionally, we introduce
grasp optimization to improve the feasibility of the hand UV coordinate map. Experimen-
tal results show that our proposed method outperforms existing 3D hand-object interaction
methods.
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