Learning Fine-Grained Visual Understanding
for Video Question Answering
via Decoupling Spatial-Temporal Modeling
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Decoupling spatial-temporal modeling into
Image and Video-language models

and pretraining to learn temporal relations between
events In videos help video question answering.
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Introduction Temporal Referring Modeling

O State-of-the-art approaches to video question answering mostly
perform coarse-grained spatial-temporal modeling.
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O Image-language (IL) models encode regions and grids, showing
great potential for encoding fine-grained spatial semantics for
video question answering.

O To answer questions about temporal relations, video-language
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O We propose Decoupled Spatial-Temporal Encoders (DeST),
decoupling spatial-temporal modeling into IL and VL encoders.
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e We incorporate a pre-trained IL encoder to encode static
spatial semantics by averaging sparsely sampled frame-by-
frame predictions at high spatial resolution.

e For questions requiring temporal relations, we train a VL
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also demonstrate the efficacy of the proposed pipeline DeST
and pre-training objective TRM.
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Previous approaches perform similarly
when taking shuffled input videos.

Comparison with prior methods on

AcivityNet-QA by question type.

Ablation study of input modalities

and pre-training strategies.
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Ablation study of encoding streams.
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