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Supplementary Material
In this supplement, we provide additional and clarifying details for the main paper. Sec-

tion A contains implementation details including the model architecture, pre-training objec-
tives, datasets, parameters of optimization, and computational cost of our model. Section B
expands the experimental results of Table 2, 6, and 7 in the main paper and offers the analysis
of the model behavior in different question types. We also conduct additional experiments
testing the modeling decision on ActivityNet-QA, as well as evaluating the influence of
temporal resolutions of the image-language model, the number of concatenated videos for
Temporal Referring Modeling, and the loss combination strategy.

A Implementation Details

A.1 Model Architectures
We introduce the details of our Decoupled Spatial-Temporal Encoders (DeST). Following
[19] and [7], the image encoder is a 12-layer Vision Transformer [6], and the video encoder
contains a Video Swin Transformer [22] (Swin-B) pre-trained on Kinetics-600 [2] for feature
extraction and a 6-layer Transformer for contextualization. The question and answer encoder
are both 6-layer Transformers [30] with each layer composed of a self-attention operation
and a feed-forward network (FFN). The image- and video-language encoder are two 6-layer
Transformers where each layer contains an additional cross-attention operation [11, 12, 18,
19, 20], in which text features serve as queries and perform attention to visual features. The
question, image, and image-language encoder are the same as the modules of ALBEF [19]
pre-trained on VQA [8]. The video contextualization module and video-language encoder
are initialized from the question and image-language encoder respectively. The image and
video encoder are fixed during the whole training process. The detailed parameters are listed
in Table I.

Hyperparameter Value

Embedding Size (D) 768
Number of Patches (N) 576
Video Feature Size (H) 1024
FFN Inner Hidden Size 3072
Number of Attention Heads 12
Attention Dropout 0.1
Dropout 0.1

Table I: Hyperparameters for the architecture.

Since the optimization of video encoding is not included in video-language training, we
extract and store video features to save memory. We operate the Video Swin Transformer
with the same configuration as Swin-B, which samples every two frames and transforms a
window of 32 frames into one feature. For long videos, such as ActivityNet [35] with an
average length of 180 seconds, we shift the window by 32 frames. For others, such as the
datasets used in pre-training or AGQA 2.0 [10], we shift the window by 16 frames, and thus
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every window overlaps with half of its previous and next window. Features of extremely
long videos are sampled such that all videos are within a limited length.

A.2 Video-Language Pre-training

A.2.1 Details of Question and Video Synthesis for Temporal Referring Modeling

Temporal Referring Modeling (TRM) generates questions to inquire about absolute and rel-
ative temporal positions of specific events in videos. Questions are formed by choosing from
five templates and filling in the templates with video descriptions. The choice of templates
includes “What happens?”, “What happens at the beginning?”, “What happens at the end?”,
“What happens before [event x]?”, and “What happens after [event x]?”, where the
first question is irrelevant to temporal relations but incorporated to facilitate video-language
matching. The other four questions are designed for resemblance to video QA requiring tem-
poral modeling, such as Temporal Relationships in ActivityNet-QA [35] or State Transition
in TGIF-QA [13].

Except for the first question paired with a single video, the corresponding videos of other
questions are synthesized by concatenating videos sampled from video captioning datasets.
This operation simulates a sequence of events that happen one after another and provides us
with the exact position of each event.

One may be concerned that the transitions of events in real videos are rather smooth and
ambiguous, instead of clear differences between videos in a random concatenated video se-
quence, where people, objects, and almost the entire scenes drastically change. For example,
in a video where people clean up the table after finishing dinner in the dining room, most
of the visual elements, such as the people and furniture, remain the same, but we humans
can easily recognize these two events by comparing the actions and interactions between
the people in the video. While TRM cannot generate such videos, our model has learned a
similar capability with TRM to compare human actions and interactions between moments.
During fine-tuning, it can focus on adapting to smooth transitions and thus learn faster than
models with neither the capability of temporal reasoning nor event recognition.

A.2.2 Auxiliary Objective with Contrastive Learning

In addition to TRM, we apply an auxiliary objective during pre-training, which aligns video
features with corresponding captions by contrastive learning, widely used in image- and
video-language pre-training [14, 19, 23, 29, 31, 36]. Specifically, with the concatenated
video feature sequence e = {e1

1, ...,e
1
M1
,e2

1, ...,e
K
MK

}, we add the beginning and the end token
before and after the sequence, as well as the temporal position encoding to each feature. Then
after contextualization, we have v = {vbos,v1

1, ...,v
1
M1
,v2

1, ...,v
K
MK

,veos}. To align each video
to its caption, the objective learns a similarity function sim(v,c) = gv( fv(v))Tgc( fc(c)), such
that parallel video-caption pairs have higher similarity scores. fv produces the representa-
tion of Vk, which averages the features of a video, e.g. fv(Vk) = ∑

Mk
m=1 vk

m, and fc delivers
the representation of a caption, which is the [CLS] embeddings of the caption feature en-
coded by the question encoder. gv and gc are two linear transformations that map the two
representations into a normalized lower-dimensional space.

Following [19], we calculate the softmax-normalized video-to-caption and caption-to-

Citation
Citation
{Yu, Xu, Yu, Yu, Zhao, Zhuang, and Tao} 2019

Citation
Citation
{Jang, Song, Yu, Kim, and Kim} 2017

Citation
Citation
{Jia, Yang, Xia, Chen, Parekh, Pham, Le, Sung, Li, and Duerig} 2021

Citation
Citation
{Li, Selvaraju, Gotmare, Joty, Xiong, and Hoi} 2021

Citation
Citation
{Luo, Ji, Shi, Huang, Duan, Li, Li, Bharti, and Zhou} 2020

Citation
Citation
{Sun, Baradel, Murphy, and Schmid} 2019

Citation
Citation
{Wang, Ge, Yan, Ge, Lin, Cai, Wu, Shan, Qie, and Shou} 2022

Citation
Citation
{Zellers, Lu, Hessel, Yu, Park, Cao, Farhadi, and Choi} 2021

Citation
Citation
{Li, Selvaraju, Gotmare, Joty, Xiong, and Hoi} 2021



LEE ET AL.: FINE-GRAINED UNDERSTANDING FOR VIDEO QUESTION ANSWERING 3

video similarity as:

pv2c
k (Vk) =

exp(sim(Vk,Ck)/τ)

∑
K
i=1 exp(sim(Vk,Ci)/τ)

, pc2v
k (Ck) =

exp(sim(Ck,Vk)/τ)

∑
K
i=1 exp(sim(Ck,Vi)/τ)

, (1)

where τ is a learnable temperature parameter. To increase the difficulty, we collect video-
caption pairs from all video sequences in the same mini-batch B, and thus K is K times the
size of a mini-batch in practice. Then, similar to [19, 25], let yyyv2c(v) and yyyc2v(c) denote the
ground-truth one-hot similarity, where the probability of positive and negative pair are 1 and
0. The video-caption contrastive loss is defined as the cross-entropy CE between ppp and yyy:

Lalign =
1
2
E(V,C)∼B[CE(yyyv2c(V), pppv2c(V))+CE(yyyc2v(C), pppc2v(C))] (2)

A.2.3 Pre-training Datasets

TRM samples video-caption pairs from video captioning datasets. We want the datasets
as diverse as possible, not limited to cooking [5], movies [26], or indoor actions [28]. To
maintain the computation within an affordable size, videos cannot be too long [16], or a
video sequence would consist of few videos, which prohibits the model from learning long-
term temporal dependency.

We pre-train the video-language encoder over VATEX [32] and TGIF [21]. VATEX con-
tains 41K videos from Kinetics-600 [2] and 826K sentences, where each video is paired
with multiple descriptions. The lengths of the videos are all 10 seconds, cropped for precise
action recognition in Kinetics. TGIF is an open-domain dataset containing 100K animated
GIFs from Tumblr and 120K sentence descriptions. The average duration is around 3.1 sec-
onds. It is worth noting that using less pre-training data is not the main motivation of this
work, but with effective objectives, our method has surpassed large-scale pre-training. If
computational cost is affordable, training with more data is expected to advance the perfor-
mance. We leave pre-training with longer videos and larger datasets for future work.

A.3 Optimization

The pre-training and fine-tuning are all optimized with AdamW optimizer and linear decay
scheduling after warmup. All experiments are run with two NVIDIA RTX 3090s, with which
the pre-training takes about 18 hours. The detailed hyperparameters are provided in Table II.

A.4 Computational Cost

The overall computation is the sum of the IL and VL models and depends on the number of
input frames T , video lengths, and the feature extractors. Let R and S denote the computation
of ALBEF and Just-Ask, our method costs about T R+S as we stack more Transformer layers
than Just-Ask, but the two streams share the question encoder. Specifically, the frozen image
encoders cost about 12 GFLOPs per frame, and the video encoder performs 40 GFLOPs per
window. The other modules need 28 GFLOPs.
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Hyperparameter Pre-train ActQA AGQA

Learning Rate (Base) 1e-5 2e-5 2e-5
Learning Rate (Video) 5e-5 2e-4 5e-5
Learning Rate (MLP) 2.5e-4 1e-3 2e-4
Learning Rate (Ans) 2e-5 2e-5 2e-5
Weight Decay 1e-2 1e-2 1e-2
AdamW ε 1e-8 1e-8 1e-8
AdamW β1 0.9 0.9 0.9
AdamW β2 0.98 0.98 0.98
Training Steps 60K - -
Training Epochs - 5 4
Warmup 0.03 0.1 0.1
Batch Size 128 64 64
Max Video Length 100 100 100
Max Question Length 50 - -
Number of Videos (K) 8 - -
Number of Frames (T ) - 16 8

Table II: Hyperparameters for pre-training (Pre-train), ActivityNet-QA (ActQA), and AGQA
2.0 (AGQA). Base: the question, image, and image-language encoder. Video: the video and
video-language encoder. Ans: the answer encoder.

B Experimental Details

B.1 Details of Temporal Modeling Analysis
Some may question our preliminary analysis of temporal modeling, in which we first train
a model with normal inputs and test it with normal and shuffled inputs. The performance
drops imply the sensitivity to the order of frames, and thus little difference may indicate the
incompetence of temporal modeling. Training and testing a model with shuffled input can
also completely eliminate the temporal information, but this approach only reveals how well
a model solves a task with spatial information (or dataset bias if the task is designed for
evaluating temporal modeling), and thus it is not suitable for assessing a model’s capability
of temporal modeling.

We conduct the analysis on AGQA and VIOLIN as some other video QA benchmarks are
less appropriate. For example, some questions in ActivietNet-QA need only spatial knowl-
edge. In NeXT-QA [33], while 29% of questions are about temporal relations, others aim
at spatial information or more advanced cognition, e.g. causal reasoning. The split of State
Transition in TGIF-QA [13], though expected to suit this analysis well, could be solved by
VIOLET without understanding the order of frames in our experiment (Table III).

B.2 Pre-training Data Used by Prior Approaches
Compared with state-of-the-art approaches, DeST performs better on ActivityNet-QA with
orders of magnitude less pre-training data. We include some widely-used pre-training datasets
that are abbreviated in Table 3 of the main paper: 100M: HowTo100M [24]; 69M: How-
ToVQA69M [34]; 180M: YT-Temporal-180M [36]; 2.5M: WebVid [1]; 14M/3M: Concep-
tual Caption [3, 27]; 5.6M: COCO [4] + VisualGenome [17].
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Method Benchmark Accuracy

VIOLET
TGIF-QA 95.34
TGIF-QA* 95.36±.08

Table III: Results of VIOLET taking shuffled frames as input on the questions of State Tran-
sition of TGIF-QA. (* signifies that input frames are shuffled. We report the average of three
results for the shuffle experiment.)

B.3 Full Results and Analysis on AGQA 2.0
AGQA 2.0 provides extensive annotations. Each question is associated with the reasoning
abilities necessary to answer the question. The annotations cover four aspects: reasoning
types, semantics class, structures, and answer types. Reasoning types define the design
of question templates for evaluating certain reasoning abilities. We list some examples of
question templates created by [9] in Table IV for the following analysis of our model’s be-
havior. The semantics class of a question describes its main subject: an object, relationship,
or action. Question structures include open questions (query), comparing attributes of two
options (compare), choosing between two options (choose), yes/no questions (verify), and
understanding of logical operators, such as and or or. Questions with binary answer types
have restricted answer choices, such as Yes/No, Before/After, or two specified options, while
the answers to open-ended questions are much more diverse.

Reasoning Type Example of Template

Object-Relationship What/Who/When/Where/How did they <rel> <object>?
Relationship-Action Did they <relation> something before or after <action>?
Object-Action Did they interact with <object> before or after <action>?
Superlative What were they <action> first/last?
Sequencing What did the person do after <action>?
Exists Did/Does/Do <concept> occur?
Duration Comparison Did they <action1> or <action2> for longer?
Activity Recognition What does the person do before/after/while <action>?

Table IV: Reasoning types and examples of their templates of AGQA 2.0.

B.3.1 Full Results of Temporal Modeling Analysis

The full results of Table 2 in the main paper are presented in Table V, where we gauge the ef-
ficacy of temporal modeling of prior approaches by inputting shuffled videos and measuring
performance drop. While Just-Ask [34] demonstrates improvement in Relationship-Action,
Object-Action and Sequencing, VIOLET [7] performs similar in most types. The poor perfor-
mance of VIOLET may be attributed to sparsely sampling, by which they enabled end-to-end
training, but it turns out that taking few frames seems not able to summarize the temporal
dynamics of whole videos.

B.3.2 Full Results and Analysis of Our Method

We show the full results of our method on AGQA 2.0 with ablation of components and
pre-training strategies in Table VI.
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Type Just-Ask* Just-Ask VIOLET* VIOLET

R
ea

so
ni

ng

Object-Relationship 46.30 47.83 49.01 48.91
Relationship-Action 50.78 66.55 50.04 50.02
Object-Action 50.77 68.78 50.13 50.24
Superlative 37.96 39.83 39.47 39.49
Sequencing 50.66 67.01 49.86 49.91
Exists 57.15 59.35 54.58 54.70
Duration Comparison 50.66 50.49 30.70 30.64
Activity Recognition 19.87 21.53 3.13 3.13

Se
m

an
tic Object 46.34 49.31 49.18 49.08

Relationship 54.63 59.60 52.32 52.41
Action 49.78 58.03 41.47 41.45

St
ru

ct
ur

e

Query 45.53 47.25 48.15 47.98
Compare 50.84 65.11 47.65 47.69
Choose 39.78 41.00 46.97 46.90
Logic 54.87 56.20 50.99 51.24
Verify 56.22 58.13 55.42 55.46

O
ve

ra
ll Binary 49.95 55.35 50.30 50.33

Open 45.53 47.25 48.15 47.98
All 47.72 51.27 49.22 49.15

Table V: Full results of the preliminary analysis of temporal modeling on AGQA 2.0. (*
means shuffled input. We report the result of one experiment.)

Type T T+F T+F T+V T+V T+F+V T+F+V* T+F+V

Object-Relationship 39.15 49.21 50.33 51.67 53.40 56.39 57.16 59.66
Relationship-Action 50.05 50.61 50.00 49.83 71.57 53.25 51.64 72.98
Object-Action 49.99 50.11 50.00 50.03 74.74 56.27 54.42 75.20
Superlative 34.00 37.96 38.87 41.82 43.80 44.54 45.70 48.94
Sequencing 49.89 50.26 49.86 49.86 72.60 54.92 53.14 73.53
Exists 50.09 57.77 59.06 50.86 53.68 59.95 59.04 63.21
Duration Comparison 48.71 51.43 55.04 44.96 37.34 62.58 60.26 60.39
Activity Recognition 14.63 14.81 16.84 13.16 19.60 21.25 21.44 27.78

Object 39.25 49.24 50.16 51.44 55.28 56.50 57.31 61.27
Relationship 50.08 54.73 55.76 50.58 57.14 57.33 56.07 63.93
Action 48.49 49.98 50.86 47.09 56.52 56.35 54.39 65.96

Query 33.28 48.18 49.33 51.99 56.48 57.46 58.90 61.22
Compare 49.99 50.62 50.73 49.42 68.28 56.11 54.23 72.04
Choose 48.10 46.24 46.76 49.50 42.38 50.34 50.40 53.01
Logic 50.03 54.28 56.36 50.68 51.91 57.52 55.78 59.18
Verify 49.98 57.48 58.45 51.28 53.44 59.49 59.45 63.02

Binary 49.47 52.00 52.70 50.17 54.74 55.76 55.01 62.61
Open 33.28 48.18 49.33 51.99 56.48 57.46 58.90 61.22
All 41.32 50.07 51.00 51.08 55.62 56.61 56.97 61.91

Table VI: Full results of our method on AGQA 2.0 with ablation of components and pre-
training strategies. (T: questions; F: frames; F: frames with the image-language encoder
pre-trained on VQA; V: videos; V: videos with the video-language encoder pre-trained with
TRM; *: shuffled video inputs.)
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We first examine the performance of inputting only questions (T), which reveals the
bias of the datasets as these questions can be solved without grounding to videos. With a
rigorous balancing procedure, this model cannot achieve more than 50% accuracy on any
question type, but some questions, for example, those belonging to Relationship-Action,
Object-Action, and Exists appear easier than others.

Inputting frames (T+F) improves the overall performance by about 10% accuracy, which
mostly comes from Object-Relationship and Exists. This is reasonable as these questions
involve less temporal information according to the templates, and they are more likely to be
solved with a few static frames with spatial information about humans, objects, and scenes.
Pre-training the image-language encoder with VQA [8] (T+F) shows further improvement
in Exists, which seems more similar to the question design of image QA.

Accessing videos (T+V) is helpful for different question types such as Superlative, in
which the questions ask about something happening first or last, but some other questions
that also require temporal modeling, including Relationship-Action or Sequencing, are not
improved. Besides, video inputs do not enhance the performance of questions improved by
frame inputs. This complementary advantage of frames and videos is consistent with our
findings in the preliminary analysis, and inputting both frames and videos (T+F+V) does
surpass inputting only one of them in all reasoning types.

Pre-training the video-language encoder with TRM (T+F+V) boosts the performance
of most reasoning types, especially Relationship-Action, Object-Action, and Sequencing.
These questions all need temporal modeling of event sequences in videos and have question
formats more similar to TRM. The huge performance gap (20% accuracy) between normal
(T+F+V) and shuffled video inputs (T+F+V*), as well as the little gap between no pre-
training (T+F+V) and shuffled inputs (T+F+V*), suggests successful temporal modeling
and verifies the efficacy of TRM.

Despite the enhancement in most questions, TRM still struggles with some reasoning
types, for example, Duration Comparison, asking a machine which action lasts longer. These
questions require a machine to memorize multiple events and identify their starting and end-
ing point to obtain their duration. Such abilities are beyond the intention of developing TRM,
and we leave it for future exploration.

B.3.3 Full Results of Ablation Study of Encoding Streams

Table 7 in the main paper is expanded as Table VII, where we first train a model with both
image- and video-language encoders, and evaluate each stream with the test set.

B.4 Ablation Study on ActivityNet-QA
The ablation study is also conducted on ActivityNet-QA, as reported in Table VIII. The result
proves that the image-language model is capable of answering some video QA problems, and
the strategy of bridging image QA and video QA further increases the performance.

B.5 Temporal Resolutions of the Image-Language Encoder
We estimate the influence of varying temporal resolutions (the number of frames T ) of the
image-language encoder. As displayed in Figure I, taking more frames substantially in-
creases the performance on ActivityNet-QA, while the improvement on AGQA is insignif-
icant. This discrepancy could be explained by the distribution of question types in the two
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Type VL IL

Object-Relationship 49.04 20.91
Relationship-Action 50.00 0.60
Object-Action 50.00 0.99
Superlative 36.00 15.86
Sequencing 49.85 0.80
Exists 57.09 0.07
Duration Comparison 58.99 0.00
Activity Recognition 13.06 0.92

Object 48.92 20.60
Relationship 54.58 0.20
Action 52.19 0.38

Query 47.35 26.68
Compare 51.24 0.69
Choose 48.29 22.11
Logic 55.09 0.04
Verify 56.51 0.08

Binary 52.52 6.30
Open 47.35 26.68
All 49.91 16.56

Table VII: Full results of the ablation study
on two encoding streams. (VL: ablating
the video-language encoder; IL: ablating the
image-language encoder.)

Question Frames Video Acc

✓ 31.01
✓ ✓ 43.15
✓ VQA 46.66

✓ VQA TRM 46.79

Table VIII: Ablation study on ActivityNet-
QA. (✓ means the modality is presented.
VQA: pre-trained on VQA. TRM: pre-
trained with TRM.)

benchmarks, where ActivityNet-QA contains more questions of static information and the
prediction is likely stabler and more robust when more frames are provided. More questions
in AGQA are related to temporal dynamics and thus less affected by the number of frames.
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61.91
61.36
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Figure I: The results on two benchmarks of inputting different numbers of frames to the
image-language encoder.

B.6 The Number of Videos for Temporal Referring Modeling

We alter the number of videos concatenated for TRM (the variable K) and study its influence.
The accuracy on AGQA 2.0 with respect to the number of videos is presented in Figure II. We
can observe that increasing the number of videos is not always beneficial to the downstream
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task. Concatenating too many videos may result in extremely long temporal dependency,
which is hard for a model to encode.

4 8 12 16
Number of Videos

56

58

60

62

A
cc

ur
ac

y 
(%

) 60.96 61.91

57.65

56.27

AGQA

Figure II: The performance on AGQA 2.0 of varying the numbers of concatenated videos for
Temporal Referring Modeling.

B.7 Multi-Task Loss Weighing
As described in A.2.2, we align visual and linguistic content by contrastive learning. An
experiment is conducted to evaluate different approaches to loss combinations. Let LTRM
and Lalign denote the loss of TRM and video-language contrastive loss. We compare adding
losses directly L1 and weighing losses by uncertainty [15] L2:

L1 = LTRM +Lalign,

L2 =
1

2σ2
1
LTRM +

1
2σ2

2
Lalign + logσ

2
1 + logσ

2
2 ,

(3)

where σ1 and σ2 are two learnable parameters. Following [15], in practice the model learns
to predict s := logσ2 for numerical stability.

Loss combination Acc

Unweighted 61.91
Weighing by uncertainty 60.15

Table IX: Comparison between different approaches to loss combination.

Table IX compares the accuracy on AGQA 2.0 of pre-training with the sum of losses
unweighted and weighted by uncertainty. The result shows that the difference between the
two approaches to combining losses is insignificant.
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