Pro-DDPM: Progressive Growing of Variable Denoising Diffusion Probabilistic Models for Faster Convergence

Rohit Gandikota and Nik Brown Northeastern University

Motivation

Longer training time for DDPM

Progressive growth in DDPM ?

Sinusoidal Faded Growth

Old Conv Block

 $n \times n$

Upsample $2n \times 2n$

New Conv Block

 $2n \times 2n$

X

Generated Image

 $2n \times 2n$

 $\lambda = \sin(\frac{\frac{t}{T}+s}{1+s},\frac{\Pi}{2})$

 $\sin(\frac{\frac{l}{2}+s}{1+s},\frac{\Pi}{2})$

1-2

Upsample

 $2n \times 2n$

Sub-optimal linear growth of layers

.

Why sinusoidal fading?

- Abrupt growth creates sudden dip
- Linear fading is suboptimal in second half
- Need for a non-linear growth technique

Advantage of sinusoidal fading

- Slower fading at the beginning of growth
- Relatively faster convergence

Log likelihood curves for different growth variants at the time of laver addition [Abrupt, Linear, Sinusoidal]

Quality Preservation

Model	FID	Model	ImageNet	CIFAR-10
BigGAN-deep	4.06	Sparse Transformer	3.44	2.80
Improved DDPM (large)	2.92	Routing Transformer	3.43	
Pro-DDPM (Ours)	2.96	DDPM	3.77	3.70
164 - 165		DDIM	-	3.10
Imagenet 64x64 (FID using InceptionV3)		Improved DDPM	3.53	2.94
		Pro-DDPM (Ours)	3.61	3.09
		Log-likelihood Comparisons		

350

gandikota.ro@northeastern.edu

Improved Training Time