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Abstract

NeRFmm [25] is the Neural Radiance Fields (NeRF) that deal with Joint Optimiza-
tion tasks, i.e., reconstructing real-world scenes and registering camera parameters si-
multaneously. Despite NeRFmm producing precise scene synthesis and pose estima-
tions, it still struggles to outperform the full-annotated baseline on challenging scenes.
In this work, we identify that there exists a systematic sub-optimality in joint opti-
mization and further identify multiple potential sources for it. To diminish the im-
pacts of potential sources, we propose Sinusoidal Neural Radiance Fields (SiNeRF)
that leverage sinusoidal activations for radiance mapping and a novel Mixed Region
Sampling (MRS) for selecting ray batch efficiently. Quantitative and qualitative results
show that compared to NeRFmm, SiNeRF achieves comprehensive significant improve-
ments in image synthesis quality and pose estimation accuracy. Codes are available at
https://github.com/yitongx/sinerf.

1 Introduction

Adopting neural networks for Novel View Synthesis (NVS) has gained popularity. The com-
munity has achieved progress on various of representation forms, including multi-layer im-
age plane [20, 23], distance-based representation [2, 16, 18], volume-based representation
[9, 11], etc. Among all, Neural Radiance Fields (NeRF) [11] are receiving growing atten-
tion for their concise structure and compelling synthesis image quality. NeRF implicitly
represents scene space with a continuous radiance mapping function parameterized by a
multi-layer perceptron (MLP), followed by volume rendering [5] to composite intermediate
color and density outputs into final synthesis.

Despite the compelling performances on scene reconstruction, NeRF-based methods are
all trained on images with annotated camera parameters. Yet real-world scene images with

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Wang, Wu, Xie, Chen, and Prisacariu} 2021

Citation
Citation
{Srinivasan, Tucker, Barron, Ramamoorthi, Ng, and Snavely} 2019

Citation
Citation
{Tucker and Snavely} 2020

Citation
Citation
{Flynn, Broxton, Debevec, DuVall, Fyffe, Overbeck, Snavely, and Tucker} 2019

Citation
Citation
{Riegler and Koltun} 2021

Citation
Citation
{Shih, Su, Kopf, and Huang} 2020

Citation
Citation
{Lombardi, Simon, Saragih, Schwartz, Lehrmann, and Sheikh} 2019

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Kajiya and Vonprotect unhbox voidb@x protect penalty @M  {}Herzen} 1984

https://github.com/yitongx/sinerf

2 Y. XIA, H. TANG, R. TIMOFTE, L. VAN GOOL: SINERF

Intrinsics

{fr. fu}

Cis ‘”}_’ S IC@) - COl

Extrinsics|
LS i} .
4 - ’ Renderin Reconstruction
Mixed Region 3D Point SIREN-MLP 9 Loss
Sampling Sampling
' Ii
- FC E
—» SIREN+FC

Figure 1: General overview of SiNeRF. Our proposed Mixed Region Sampling contains both
key point ray candidates (in circles) and random ray candidates (in green crosses).
The reconstruction loss updates both SiNeRF and camera parameters. We empirically scale
o by 25 to avoid faded synthesis.

precisely annotated camera parameters are always expensive and are not accessible all the
time. NeRFmm [25] proposes an end-to-end NVS framework without camera annotations,
reconstructs high-fidelity real-world scenes, and estimates accurate poses comparable to a
fully-annotated baseline. But NeRFmm is reported to struggle on textureless scenes where
joint optimization can easily fall into local minima.

In this work, we aim to improve NeRFmm by alleviating its systematic sub-optimality.
Inspired by the smooth nature and powerful expressiveness in complex signals of periodic
activations, we design a novel Sinusoidal Neural Radiance Fields (SiNeRF) for joint opti-
mization. We further reveal the inefficiency of conventional random sampling and propose
a novel named Mixed Region Sampling that allocates different weights to each pixel and
samples from candidates strategically.

To conclude our contributions, in this work

* we propose a novel neural radiance field named SiNeRF for alleviating the systematic
sub-optimality of joint optimization in NeRFmm.

* we reveal the inefficiency of Random Sampling and propose a novel Mixed Region
Sampling strategy that proved to be beneficial for tasks on challenging scenes. We
prove that its combination with SiNeRF provides the best performances.

» comprehensive quantitative, qualitative results, and ablation study on real-world scene
dataset show our method’s comprehensive improvements on camera pose estimation
accuracy and novel view synthesis quality compared to NeRFmm.

2 Related Work

Neural Scene Representation. Mildenhall et al. [11] propose to encode scene represen-
tation inside a multi-layer perceptron (MLP) that directly regresses raw color and density.
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The final synthesis is composited by volume rendering [5, 10] which is differentiable for
backpropagating reconstruction loss. NeRF’s success on high-fidelity NVS tasks has ex-
panded its applications on series of vision tasks, e.g., scene relighting [21], dynamic scene
reconstruction [7, 13, 14], real-time scene synthesis [3, 12], etc.

Scene Reconstruction with Imperfect Camera Annotations. Recently some NeRF-related
works tackle scene reconstruction tasks without accurately annotated camera parameters.
Our work is improved upon NeRFmm [25], which proposes an end-to-end framework that
achieves compelling NVS performances without both camera intrinsics and extrinsics. A
similar pipeline is proposed by iNeRF [26], yet it only estimates poses of unknown images,
and its Interest Region Sampling inspires us to improve sampling strategy for joint optimiza-
tion. BARF [8] builds the connection between 2D image alignment and 3D scene recon-
struction and uses a coarse-to-fine encoding adjustment for efficient training. Yet BARF is
equipped with known intrinsic, and it initializes extrinsic with priors, whereas our work es-
timates both intrinsics and extrinsics with non-prior initializations. SCNeRF [4] focuses on
self-calibrating image distortions and does not output pose estimations, whose task concen-
trations are different from ours.

Sinusoidal-Activated Multi-Layer Perceptron. SIREN [19] is the first to use sinusoidal-
activated MLP for implicit neural representation. A SIREN-MLP is found to have rich ex-
pressiveness for representing zero- and first-order complex signals and thus relieving the
network’s hard prerequisite on Fourier-based input encoding. 7-GAN [1] applies sinusoidal
activations for Generative Adversarial Networks and achieves disentanglements on viewing-
angle control and implicit 3D scene representation. Inspired by prior works, to alleviate the
sub-optimality of joint optimization in NeRFmm, we adopt sinusoidal activations into our
SiNeRF for scene reconstruction and camera parameter estimations and further stabilize the
training with our novel sampling strategy.

3 Methods

3.1 NeRFmm Preliminary

NeRFmm [25] reconstructs 3D scenes from sparse scene images I = {Z;,7,...,Zy} with-
out annotated camera extrinsics T = {71,75,..., 7y} and intrinsics f = {f;, fy}. A continu-

ous function, parameterized by a multilayer perceptron (MLP) @, is used for view-dependent
radiance mapping: Fg : (x,d) — (¢,0), where X is the point location in the implicit scene
space, d is the corresponding unit-length viewing direction, ¢ € R? and 6 € R are the raw
color and density values, respectively.

The volume rendering [5, 10], denoted as operator R, is used for compositing raw color
and density values into final RGB pixels. Given a 2D pixel location p € R? of the i-th image
and a ray r(¢) = o+ rd that meets p on the image plane, the final color outputs would be:

=

i—1
Zi(p) = R(T:,p:©) = Y Wi (1 —exp(—0;8)) ¢, Wi = exp(— Y 0;8)), (D
: P

i=1

where W is the accummulated transmittance of the ray r(z). o € R? denotes the camera
origin, ¢ € [t,,tf] denotes the sampling point location within the nearest and farest field.
(¢;, 0;) are the raw color-density values of the i-th sampling point. §; = ;1 —#; is the interval
between two sampling points along the ray. And we acquire a set of synthesized scene images
i= {21, %,.... 20},
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Now that the implicit mapping Fg and volume rendering operator R are differentiable,
the pipeline is trained in a supervised learning fashion:

@, T".f* = arg min L(L, T,f|1) = argmin }" Y"||Zi(p) - Zi(p) 13- 2)
0,Tf OTf—1p
3.2 Camera Parameters Formation

Camera Intrinsics. Using a pinhole camera model, the camera intrinsics are represented in
a calibration matrix:

fx 9 Px
K=10 fy b, (3
0O 0 1

where f; and fy are optimizable focal length along horizontal and vertical axis respectively,
px and p, are the known coordinates of the image plane’s origin. All intrinsics are shared
across all input images.
Camera Extrinsics. Following prior works [25, 26], the camera extrinsics in our work are
represented by a rigid transform 7,,,,;4 = [R|t] € SE(3), where R € SO(3) denotes the camera
rotation and t € R? denotes the camera translation. A vector x € R? after rigid transform
would be X' = Rx +t.

To make the rotation parameters optimizable, by using Rodrigues’ formula, we do axis-
angle decomposition:

in 0 1—cos@
R= et =1 00 12900 g 2 @

where r € R3, 6 =||r|| denotes the angle of rotation, F = r/||r|| denotes the axis of rotation,
and [-]x denotes the skew operator that converts a vector into a cross-product matrix. For
each input image Z; we define its extrinsics {#;,;}, which can be directly optimized during
training.

In our work we focus on jointly optimize { fe, fy,f‘i,f,} without using any two-stage re-
finements in NeRFmm [25] or prior knowledge on intrinsics or extrinsics in BARF [8].

3.3 Improve Joint Optimization with SiNeRF
3.3.1 Potential Sub-Optimality of NeRFmm

Although NeRFmm is capable of producing compelling camera parameter estimation and
scene reconstruction, it suffers from falling into minima on specific scenes, e.g., textureless
Room scene and inconsistent Orchids in the LLFF dataset. Moreover, in those scenes, there
exist obvious gaps between COLMAP estimated intrinsics and estimated intrinsics as well
as degeneration on NVS quality compared to ground truth, as reported in [25].

It has been a convention in NeRF-related tasks to use a 256-width ReLU-MLP for ra-
diance mapping, while NeRFmm only adopts a 128-width ReLU-MLP for joint optimizing.
Thus, it seems natural to blame the weak expressiveness of a narrow MLP for causing the
potential sub-optimality. However, our experiment results show that simply increasing the
width of MLP does not always improve NeRFmm'’s performances, e.g., there exists perfor-
mance degenerations on Fortress and Orchids scenes, as shown in the ref-128 and ref-256
columns in Table 1 and 2.
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To conclude, NeRFmm’s joint optimization suffers from a systematic sub-optimality
that cannot be solved by simply adopting a larger MLP.

In the following sections, we identify that, the absence of a better radiance mapping
network and the inefficient ray sampling techniques, would be two of the potential sources
for such sub-optimality and they are the very focuses of our work.

3.3.2 SiNeRF Architecture

SiNeRF, our proposed radiance mapping network, consists of a SIREN-MLP [19] head fol-
lowed by a color branch and a density branch. We denote a L-layer SIREN-MLP head as:

D(x) =@ropr—10--0¢1(x), S
where ¢, : R%-1 — R is the I-th fully-connected SIREN layer

¢(x) = sin(og (W;x+b;) + ), (6)

defined by a weight W; € R%*4i-1_a bias b; € R, a frequency scaling factor oy € R, and a
phase shift factor B; € R%.

We follow the initialization scheme of [19]. We set frequency scaling factors o; = 30
and oy = 1 for [ € {2,3,---,L}. We set all phase shift factors f; = 0 for [ € {1,---,L}.
We initialize weight matrices Wi ~ U (—1/dy,1/d) and W; ~U(—+/6/d;,/6/d;) for ] €
{2,3,---,L}. For SiNeRF in experiments, we keep layer number L = 8 and hidden unit
number d; = 256 for [ € {1,2,---,L}. No positional encoding is used for input.

After the SIREN-MLP head, we append two branches for outputting raw color ¢ € R3
and raw density o € R respectively. Please see Figure 1 for more details about SiNeRF
architecture.

3.3.3 Partial Benefits For the Joint Optimization

We observe that simply replacing ReLU-MLP with SiNeRF for radiance mapping can only
improve performances on a limited number of scenes. The reason for the partially im-
provements can be that: the input signal is clamped by sinusoidal activation’s amplitude and
limiting the output value range may bring stability for optimization while also may reduce
the signal’s expressiveness. Thus, to achieve the general alleviation of sub-optimality in
joint optimization, we propose improvements on the ray sampling strategy in the following
section.

3.4 Mixed Region Sampling (MRS)

Random Sampling is to randomly choose M rays from random candidate set Pr((?n dom =
{p|Vp € Z;}. Along each ray, we then apply 3D point sampling to select several spatial
points for radiance mapping. Recall that NeRF’s reconstruction loss computes the average
pixel difference between rendered pixels and corresponding ground truth. A batch of ran-
domly sampled rays would have different colors. It guarantees the ray batch’s diversity
and is a critical condition for efficient training.

To prove that, we set a simple experiment NeRFmm on Flower scene and fix all settings
unchanged, except that every ray batch is selected from a randomly-placed 32 x 32 image
patch instead of randomly-selected 1024 rays. Such sampling strategy is the most extreme
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case where the ray batch has minimum diversity. As for results, the PSNR score halves and
pose errors increase by 20 times, compared to baseline.

Random Sampling is straightforward and has been widely adopted by NeRFmm and
other NeRF-related works [8, 11, 25]. Yet this strategy still has its limitation. On a textureless
scene like Fortress in the LLFF dataset, even a batch of randomly sampled pixels may have
homogenized colors, which will result in an iteration of "poor supervision", i.e., the network
is not forced to produce discriminative outputs at different pixel locations.

We argue that, on the one hand, there are fewer constraints for joint optimization tasks.
The optimizing direction provided by such poor supervision might potentially make models
easier to fall into local minima. On the other hand, inspired by offline SfM methods [17, 22]
that leverage key points for efficient inter-image matching, we believe that, compared to Ran-
dom Sampling with equal weights, treating pixels with different importances and sampling
them strategically would help alleviating the sub-optimality in joint optimization.

Thus, we propose a novel sampling strategy designed for joint optimization tasks, named
Mixed Region Sampling (MRS):

* For the i-th image, we use a SIFT detector to find a set of keypoints P(gi) ={p1,P2," " Pk}
For each keypoint p; we form a local region set Pj(i) = {p|Vp € Nsxs(j)} where
Nsx5(j) denotes a set of neighbour points of keypoint p; within a 5 x 5 region. The
region candidate set is defined as Pl Péi) U Pfi) U---u ’PI((i).

region

e Then, we define a time-variant weight for region sampling:

1—t/t, 0<t<t,
W(t):{ t/t, 0<t<t¢

, 7
0 t>t, ™

that linearly decreases within the range [0,7,|, where #, represents the end time step
of MRS. For the M-ray sampling at time 7, w(¢)M rays are sampled from region set

P(i), and (1 —w(r))M rays are sampled from random set pl) After t,, MRS

region - random®
falls back to random sampling.

Our Mixed Region Sampling (MRS) leverages both region candidates for efficient region
matching at the early training stage and random candidates for discriminative learning at
the late training stage, which is improved upon the Interst Region Sampling [26] that only
samples candidates from the regions of interest for pose optimization. We show in the abla-
tion study in Section 4.4 that adopting MRS is critical for improving both image quality and
pose accuracy, and its combination with SIREN-MLP provides more general alleviation on
sub-optimality in joint optimization.

3.5 Testing

Because of the ambiguity between camera translation scale and camera intrinsics [15], the
learned poses may not be in the same pose space with COLMAP annotated poses. Thus,
pose alignment is required for a valid test. Following [25], firstly, we use ATE toolbox
[28] to compute a Sim(3) transformation that aligns the COLMAP testing trajectory with
the testing trajectory in the SiNeRF pose space. Secondly, we optimize the roughly-aligned
testing trajectories by minimizing reconstruction loss while keeping intrinsics and network
parameters fixed. This step is to provide precise alignments on trajectories for testing. Lastly,
we compute the image quality and pose metrics on test images.
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4 Experiments

4.1 Settings

Dataset. We experiment on the LLFF dataset with 8 forward-facing real-world scenes. Every
8-th image in the image sequences is selected for testing. All image resolution is set to
756 x 1008. Camera annoations are estimated by COLMAP [17].

Training Details. For intrinsics, we initialize f, and f} to be the width and height of the
image. For extrinsics, for each image Z; we initialize the translation t; to be a zero vector,
and rotation matrix R; to be an identity matrix, i.e., ¥; to be a zero vector. We initialize an 8-
layer 256-width SIREN-MLP with methods mentioned in Section 3.3.2. For each iteration,
1024 rays are selected by Mixed Region Sampling (MRS), where ¢, is set to 500 epochs for
Fortress and Trex scenes and 50 epochs for the rest. Along each ray 128 coordinates are
uniformly selected without using hierarchical sampling [11].

We train the model for 10k epochs for each scene with three Adam [6] optimizers for
intrinsics, extrinsics, and SIREN-MLP, respectively. Extrinsics’ and intrinsics’ learning rates
are initialized to le-3 and exponentially decay by 0.9 every 100 epochs. SIREN-MLP’s
learning rate is initialized to le-3 for all scenes except that we lower it to Se-4 for Fortress
and le-4 for Orchids scene, and exponentially decay by 0.9954 every 10 epochs.

4.2 Quantitative Evaluations

We compare the performances between NeRFmm baselines and SiNeRF. Mean pose trans-
lation and rotation errors are shown in Table 1. NVS image qualities on three metrics PSNR,
SSIM [24] and LPIPS [27] are shown in Table 2.

As shown in the results, adopting a wider network does not necessarily improve the pose
accuracy (e.g., Fern scene) and image quality (e.g., Fortress scene), indicating that joint
optimization may exist a systematic sub-optimality. Meanwhile, SiNeRF improves image
qualities significantly while achieving pose estimations closed to the ground truth provided
by COLMAP.

We mention that the pose errors only indicate how well our pose estimations match the
COLMAP estimations. Small pose errors do not guarantee good NVS image qualities.

Our method does not outperform NeRFmm256 baseline on Leaves scenes, which indi-
cates that joint optimization is sensitive to scene content. The systematic sub-optimality can
only be alleviated instead of completely solved by SiNeRF.

4.3 Qualitative Results

In Figure 2 we display the comparisons on image synthesis between NeRFmm baselines and
SiNeRF. Our method is able to reconstruct fine details in the real-world scene with high
fidelity.

We also display the comparisons on pose trajectories between SiNeRF estimations and
COLMAP estimations. The highly overlapped trajectories show that our method can learn
accurate pose estimations closed to classical SfM estimations.

4.4 Ablation Study

To exclude the influence of adopting a wider MLP, we list 256-width ReLU-MLP results in
the NeRFmm256 columns in Table 1 and 2.
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Pose Error
Scene Translation(x 1072) | Rotation(°) |
NeRFmmi128 NeRFmm256 SiNeRF NeRFmml28 NeRFmm256 SiNeRF

Fern 0.514 0.765 0.438 0.957 1.566 0.743
Flower 1.039 1.200 0.796 3.657 3.211 0.506
Fortress 6.463 6.046 4.068 2.590 2.410 1.772
Horns 1.607 1.476 2.153 3.806 3.044 2.662
Leaves 0.676 0.608 0.831 8.248 6.782 8.762
Orchids 1.627 2.243 1.257 4.140 5.459 3.244
Room 1.315 2.148 2.145 3.357 3.745 2.075
Trex 1.213 1.467 0.462 4.953 6.339 0.856
Mean 1.807 1.994 1.519 3.964 4.070 2.578

Table 1: Quantitative results of pose estimation on LLFF dataset. NeRFmmliI28 and
NeRFmm256 denote the NeRFmm baseline with MLP width to be 128 and 256 respectively.
Best results are bolded.

Image Quality

Scene PSNR 1 SSIM 1 LPIPS |
NeRFmm128 NeRFmm256 SiNeRF NeRFmm128 NeRFmm256 SiNeRF NeRFmmi28 NeRFmm256 SiNeRF

Fern 21.811 22.154 22.482 0.631 0.648 0.665 0.479 0.459 0.437
Flower 25.430 26.606 27.229 0.714 0.772 0.798 0.366 0.296 0.295
Fortress 26.173 25.596 27.465 0.653 0.602 0.722 0.438 0.538 0.393
Horns 22.949 23.174 24.142 0.626 0.635 0.684 0.492 0.506 0.431
Leaves 18.647 19.741 19.152 0.512 0.609 0.571 0.476 0.385 0.392
Orchids 16.695 15.858 16.922 0.391 0.350 0.408 0.540 0.550 0.529
Room 25.623 25.675 26.101 0.831 0.836 0.844 0.450 0.411 0.426

Trex 22.551 23.376 24.939 0.719 0.759 0.816 0.438 0.390 0.356

Mean 22.485 22.773 23.554 0.635 0.651 0.689 0.460 0.442 0.407

Table 2: Quantitative results of novel view synthesis on LLFF dataset. NeRFmmlI28 and
NeRFmm256 denote the NeRFmm baseline with MLP width to be 128 and 256 respectively.
Best results are bolded.

Scene Ttems Pose Error Image Quality
Translation(x1072) | Rotation(°) | PSNR 1 SSIM 1 LPIPS |
SiNeRF 4.068 1.772 27.465 0.722 0.393
Fortress w/o SIREN 18.005 155.553 18.593 0.492 0.484
w/o MRS 6.242 1.797 25.542 0.605 0.532
w/o SIREN and MRS 6.046 2410 25.596 0.602 0.538
SiNeRF 0.462 0.856 24.939 0.816 0.356
Trex w/o SIREN 1.891 7.958 22.478 0.719 0.430
w/o MRS 17.755 133.462 14.984 0.452 0.659
w/o SIREN and MRS 1.467 6.339 23.376 0.759 0.390

Table 3: Quantitative results of ablation study. (1) w/o SIREN denotes NeRFmm with 256-
width ReLU-MLP and MRS. (2) w/o MRS denotes SIREN-MLP with Random Sampling. (3)
w/o SIREN and MRS denotes NeRFmm with 256-with ReLU-MLP and Random Sampling,
which is the baseline. For all MRS in the table we set 7, = 500. Best results are bolded.
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NeRFmm-128 NeRFmm-256 SiNeRF Reference

Figure 2: Qualitative results of our method on the LLFF dataset. Comparisons on pose
trajectories between SiNeRF and COLMAP are displayed in the bottom-left corner for each
scene.
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w/o SIREN w/o MRS

__ w/o SIREN and MRS

2 o TP i 4
PSNR: 24.939 PSNR: 22.478 PSNR: 14.984 PSNR: 23.376

Figure 3: Qualitative results of ablation study on Trex scene.

To prove the effectiveness of MRS, we conduct the ablation study on two challenging and

representative scenes: Fortress, on which NeRFmm is reported to have difficulties converg-
ing, and T'rex, which has lots of fine details and causes relative high pose errors in baselines.
Quantitative metrics are shown in Table 3. Qualitative results are shown in Figure 3.
Analysis on results on Fortress. As mentioned in Section 3.4, the sampling strategy’s di-
versity is critical for efficient training on textureless scenes like Fortress, where Random
Sampling may happen to produce a homogenized ray batch that leads to poor supervision.
MRS, which selects ray batches within a limited amount of key-point regions, would be
even more likely to produce undiversified ray batches. Using SIREN-MLP can smoothen
the optimization surface and help escape from early local minima. But SIREN-MLP doesn’t
always guarantee comprehensive improvements. This explains performances of "SiNeRF"
>"w/o SIREN and MRS" or "w/o MRS" >"w/o SIREN" in Table 3.
Analysis on results on Trex. SIREN-MLP favors scenes with large consistent patterns like
Flowers and Fortress. Yet on fine-detailed scenes like Trex, SIREN-MLP will struggle to
distinguish close-by pixels with various colors and produces blurred consistent patterns,
as shown in Figure 3. Besides, MRS provides the best performances in combination with
SIREN-MLP. This explains performances of "SiNeRF" >"w/o SIREN and MRS" >"w/o MRS"
or "w/o SIREN" in Table 3.

5 Conclusion

In this work, we identify the potential sources of the systematic sub-optimality of joint opti-
mization. We propose SiNeRF architecture and Mixed Region Sampling for alleviating such
sub-optimality. Experiments and ablation studies show comprehensive improvements in both
image synthesis quality and pose accuracy compared to NeRFmm baselines and prove the
effectiveness of our designs.
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