SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction*

Yitong Xia¹, Hao Tang¹, Radu Timofte^{1,2}, Luc Van Gool¹ ¹Computer Vision Laboratory, D-ITET, ETH Zürich, Switzerland ²Computer Vision Laboratory, CAIDAS, University of Würzburg, Germany

Overview

2 Brief introduction on paper

• What can SiNeRF do?

SiNeRF is designed for improving the Joint Optimization (JO) [1], i.e. jointly learning camera poses and reconstructing scenes simultaneously.

• Motivation?

JO is sensitive to scene contents and naively adopting a large network for radiance mapping does not always work. Thus, we believe there may exist a systematic sub-optimality in JO with multiple sources. We need non-trivial approaches to alleviate.

• What we found?

★ Radiance mapping network is not good enough. Either increasing network size or adopting sinusoidal activations only improve performances on particular scenes. **★ Random ray sampling method is not good enough.** Random Sampling harms the performances on scenes with similar patterns. The pixels should not be treated equally. **★ Diversity matters for ray sampling.** Too-concentrated ray batch will lead to homogeneous rendering. Diversity is what we should learn from Random Sampling. In our work, we discovered and verified the sources for the sub-optimality of JO and then improved them with SiNeRF.

References

3 Quantitative Results

		Mean Pose Error			
Tr	Translation(×10 ⁻²) \downarrow				
<i>NeRFmm12</i> 1.807	28 NeRF 1.	<i>mm256</i> SiN 994 1.	NeRF NeRFn 519 3.9	1 <i>m128 1</i> 64	
Table 1: Mea	an pose erro	r comparisons on	LLFF dataset. Pl	ease refer to	
Table 1: Mea	an pose erro	r comparisons on Mea	LLFF dataset. Planner Image Quali t	ease refer to	
Table 1: Mea PSNR ↑	an pose erro	r comparisons on Mea	LLFF dataset. Planner in Image Quality SSIM †	ease refer to	

4 Qualitative Results

Figure 2: Part of qualitative results on LLFF dataset. Please refer to the paper for full results.

Figure 3: Qualitative results of ablation study.

[1] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. Nerf-: Neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064, 2021.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

er to the paper for full results.