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Abstract

Existing efforts in multi-view multi-person 3D human pose estimation often rely
on 6 DoF camera poses to obtain cross-view body joint matches for solving 3D poses.
Some other efforts use networks specifically trained for each dataset to regress 3D hu-
man poses. These methods do not generalize well to scenarios in the wild since they
require calibrated camera poses or large amounts of training data. We present an ap-
proach that requires none of them. Our key insight is to combine (1) the well-developed
2D human detection and description networks that can be pre-trained on open datasets
with (2) multi-view geometry and optimization algorithms that generalize to arbitrary
settings. Using 2D human appearance embedding as the input, we solve cross-view
human matching as an optimization problem with the numbers of cameras and people
and the fact that one person cannot be matched to another person in the same view as
the constraints. With the cross-view matches, we estimate the camera poses and 3D
human poses simultaneously using multi-view geometry and bundle adjustment opti-
mization. On open datasets, our approach reaches smaller pose estimation error than
previous works with fewer requirements of camera pose and model training. We also
evaluate our approach with three wild datasets with various settings, including indoor
and outdoor environments, static and dynamic cameras, etc. It shows excellent gen-
eralization ability across different settings. The code is made for public at: https:
//github.com/yan293/UncalibratedMVMP3DPose.

1 Introduction

Multi-view multi-person (MVMP) 3D human pose estimation is a fundamental problem un-
derneath many tasks, such as Augmented Reality, Virtual Reality, and social activity anal-
ysis. Existing efforts generally focus on controlled environments where the 6-DoF camera
poses are well calibrated. Despite the progress on numbered public datasets [0, E8], solving
the task in a more real-life-like environment without calibrated camera poses has received
less attention. This work targets the setting where camera poses are unknown, and dataset-
specific model training is not allowed, aiming to attempt toward in-the-wild scenarios.
Under our setting, previous MVMP 3D pose estimation efforts can no longer apply due
to their limitations. Previous efforts generally fall into two categories. The first category
of methods [ER, B3, BJ] directly regress 3D human poses from multi-view images/videos
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Figure 1: 3D human pose estimation using our approach with two static cameras and one
camera mounted on a flying drone. Given multi-view raw images, our approach estimates
human pose without requiring camera poses and model training.

using pre-trained neural networks. However, these methods require the same camera setting
and scene for training and inference. In other words, they must collect data and train a new
network once the camera setting or the scene changes. The second category of methods solve
the task in a multi-stage manner [H, [3, 3, B8]. These methods often first obtain cross-view
correspondences using appearance feature and geometric constraint [[3] and then estimate
the 3D human pose by optimizing a 3DPS model [0]. However, both the geometric constraint
and the 3DPS model require known camera poses.

This work presents an approach that does not require camera poses for solving cross-view
matching. Our insight is to use the number of cameras, the number of people, and the fact
that one person cannot be matched to another person in the same view as prior knowledge
to constrain the possible solution space of cross-view matching to a small solvable region.
Specifically, consider an MVMP system with N cameras and K people. We first detect the
people from all images [[I] and embed them using a pre-trained person re-identification
network [BJ]. Next, we match these appearance embeddings to K people. The matching
must follow three rules: (1) Each person must be observed by at least two cameras to be rid
of depth ambiguity, (2) each person must have no more than N matches, and (3) people from
the same view must not match. Using these rules, we formulate the cross-view matching
problem as constrained optimization and narrow the solution space to a small feasible region
from which the correct solution can be easily reached. Sec. 3.1 will expands more details.

Once matched people across views, we can obtain 2D point correspondences by associat-
ing their joints and then solve the relative 6-DoF camera poses. However, the solved camera
poses can be incorrect due to the low quality of the point correspondences. For example,
the key points from some camera views can gather in a small region in the image, leading to
local minima of the estimated camera poses. To address this, we introduce a “Camera Pose
Self-Validation" process. Specifically, we let camera poses solved from all camera pairs vali-
date each other and use the one that aligns the best with others as the final solution. This way,
we can leverage those high-quality correspondences from all camera pairs to help obtain ro-
bust camera pose estimates. Sec. 3.2 will detail on this process. With the camera poses, we
then solve the 3D human poses, aggregate the solutions from all camera pairs using the fact
that the length of a bone keeps fixed in 3D space, and perform a further pose optimization
through Bundle Adjustment [B4]. Fig. 2 presents an overview of our approach.

We evaluate our approach on three public datasets [0, Z8] and three wild datasets. On the
public datasets, our approach outperforms SOTAs with fewer requirements of camera poses
and data-specific model training. On the wild datasets, our approach shows good general-
ization ability across various settings, such as indoor and outdoor environments, static and
moving cameras, small and large field-of-views, etc. Fig. | shows an example under the
moving camera setting. Our main contributions are threefold: (1) We present an approach


Citation
Citation
{Belagiannis, Amin, Andriluka, Schiele, Navab, and Ilic} 2015

Citation
Citation
{Dong, Jiang, Huang, Bao, and Zhou} 2019

Citation
Citation
{Ershadi-Nasab, Noury, Kasaei, and Sanaei} 2018

Citation
Citation
{Wu, Jin, Liu, Bai, Qian, Liu, and Ouyang} 2021

Citation
Citation
{Dong, Jiang, Huang, Bao, and Zhou} 2019

Citation
Citation
{Belagiannis, Amin, Andriluka, Schiele, Navab, and Ilic} 2014{}

Citation
Citation
{Cheng, Xiao, Wang, Shi, Huang, and Zhang} 2020{}

Citation
Citation
{Luo, Gu, Liao, Lai, and Jiang} 2019

Citation
Citation
{Triggs, McLauchlan, Hartley, and Fitzgibbon} 1999

Citation
Citation
{Belagiannis, Amin, Andriluka, Schiele, Navab, and Ilic} 2014{}

Citation
Citation
{Joo, Liu, Tan, Gui, Nabbe, Matthews, Kanade, Nobuhara, and Sheikh} 2015


YAN XU, KRIS KITANI: MVMP 3D HPE WITH UNCALIBRATED CAMERAS 3

for MVMP 3D human pose estimation without requiring camera poses and dataset-specific
model training; (2) We introduce a constrained optimization formulation for cross-view hu-
man matching when epipolar constraints are inapplicable; (3) We proposed a “Camera Pose
Self-Validation" process to deal with the low-quality correspondences problem.

2 Related work

Multi-Person 3D Human Pose Estimation We discuss both SVMP (single-view multi-
person) and MVMP settings. Existing works in the SVMP setting generally include two
categories: Top-down approaches and bottom-up approaches. Top-down approaches [B, EI,
B0, B0, BT detect 2D people, then perform 2D-to-3D lifting [B, B3, BH] or direct regres-
sion [E3, B4, E3] to obtain 3D poses. Bottom-up approaches [[@, B4, EQ, E3, B7] first es-
timate 3D locations for all the joints, then associate the joints to each person using depth
information. Since the problem is ill-posed, both approaches usually require large amounts
of data to constrain the search domain in a small space. Our approach follows the top-
down strategy but targets the multi-view setting and does not require dataset-specific train-
ing. Works in the MVMP setting also typically fall into two categories: multi-stage ap-
proaches and single-stage approaches. Multi-stage approaches [B, B, [3, 3] first obtain the
2D poses [B, [, B4, B2], then match the 2D poses using appearance features [B2, BO] and ge-
ometry cues [[3]. Finally, they solve the 3D pose using multi-view geometry [0, ] Single-
stage approaches [E3, B3, B3] solve the problem through end-to-end regression. They usually
divide the scene into 3D voxels and localize each person regressed from multi-view data.
They then perform a fine-grained regression to obtain joint locations. Some efforts [EX, BEH]
utilize Graph Convolutional Neural Networks [ZH] and Transformers [B8] to improve per-
formance. Multi-stage methods rely on camera poses for cross-view matching. Single-stage
approaches need to train a new regressor for each scene. Our approach requires neither.
Pose Estimation in the Wild Because of the difficulty of the task and lack of data, existing
efforts mainly focus on the single-person setting. Works commonly use multi-view geome-
try [, [4, I3, 9, B9, B74] as supervision for solving the task. They estimate the 3D human
pose and relative camera poses simultaneously [[[, [4, B9, E7], then back-project the 3D
pose to each view and minimize the re-projection errors to update the estimation. They usu-
ally limit the feasible camera poses through random sampling [, [4] or enumeration [EY]
and restrict the human pose using prior knowledge learned from other datasets [Z4, [3]. In-
stead of focusing on the single-person setting, we make an attempt toward the multi-person
setting in this work. To clarify, we assume the intrinsic and distortion parameters provided,
only the camera poses unknown.

Pose Estimation and Cross-View Matching Using Human Since our method uses hu-
man information to estimate camera poses as an intermediate step, we briefly cover related
works that use human information for camera pose estimation, which have been well-studied
over decades. Some methods [, B0, BEd] use human height distribution learned from large
amounts of data as prior knowledge for camera pose estimation. Other methods use head
and foot locations [[¥, I3, B3] or human trajectories [M, B3, B2, B9, BO] as geometric con-
straints for pose estimation, cross-view matching, and tracking. Similar to these methods,
our approach also uses humans in the scene to extract useful geometric information. The
difference is that our approach uses 2D human pose detection and associates corresponding
human body parts across camera views to obtain 2D-to-2D points matches.
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Figure 2: Overview of our approach. Given multi-view images, (a) we first detect 2D poses
and solve cross-view human matching as constrained optimization. Then, (b) we estimate
camera poses and perform self validation. Finally, (c) we solve 3D human poses, aggregate
multi-view information and further optimize through (d) Bundle Adjustment.

3 Method

Fig. 2 presents an overview of our approach. It includes multiple stages. Sec. 3.1 introduces
the process of solving cross-view human matching as a constrained optimization problem.
Sec. 3.2 details camera pose estimation and self-validation. Sec. 3.3 expands on 3D human
pose estimation, multi-view information aggregation, and bundle adjustment optimization.

3.1 Cross-View Matching As Constrained Optimization

Given multi-view images, we detect 2D human poses [[CI] and represent each person with its
re-identification (re-ID) feature [Bd], extracted with a network pre-trained on open datasets [B4].
The feature is L2-normalized with a dimension of 1 x 2048.

Consider a MVMP system with N cameras and K people. We refer to a camera by its id i
and a person by its id k, where 1 <i < N and 1 < k < K. Since one camera may not view all
the people, so we use M;, 1 < M; <K, to represent the number of people observed by camera
i. We denote the re-ID feature of the j-th person from camera i as x; ; € R?™¥, where 1 <
i <N, 1< j<M;. The features of all people from all camera views are, D = {xi, j }iv 1{4’] 1
Our goal is to match the 2D features of the same person from multiple camera views. The
goal can be achieved by finding K cluster centers, {C!,---,CK}, such that the sum of the L2
distance between each data point x; ; and its nearest cluster center C*is minimized. Formally,

1
. k k12
min Wi (5 lxi =€) M

K
st. Y Wh=1Lie{l,--- N}, je{l,--- M}
Wh>0ief{l, - N} je{l,- M} ke{l,- K}

where, Wk] = 1 if cluster center C* is closest to data point x; ;, otherwise, W = 0. The

solved C* € R?%8 will be a general representation of person k such that it is the closest
cluster center to the 2D features of person k from multiple camera views.

However, the correct solution of Eq. 1 difficult to reach because of the ample solution
space. According to Bradley et al. [B], when feature dimension d > 10, local optima are
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Figure 3: Results of unconstrained matching (up) and our approach (bottom). The uncon-
strained matching gets stuck at a local optimum. Our approach reaches the correct solution.

likely to happen. Fig. 3 (a) shows an example of local minima. To restrict the solution space
to a small feasible region, we found that three implicit rules can be leveraged.

Rule 1: Each person is viewed by at least two cameras. Rule I is straightforward since a
person needs to be viewed by at least two cameras in order to be reconstructed without depth
ambiguities. Using the above definitions, we can formally define Rule I as

N M;

ZZ >0 ke{l, K} @)

i=1j=

Rule 2: The number of matches for a person is less than the number of cameras. Since
each person can be viewed from at most N cameras, the expected size of any cluster should
be smaller than N, as shown in Fig. 4 (b). Formally, we can define Rule 2 as

i=1j=

Rule 3: Observations from the same view should not be matched. Rule 3 means that
the members of a cluster should come from different camera views. Violating Rule 3 means
two people in the same image belong to the same cluster. The formulation of Rule 3 is less
straightforward. Fig. 4 (c) and (d) present visual explanations. As the figure shows, for
camera i, the sum of Wlkj over people should be no greater than 1 for any C¥. Formally,

M;
j=1

Fig. 4 presents the graph representations of cross-view matching and the above rules. Com-

bining Eq. 1 2, 3, 4, we have the final constrained optimization formulation for the cross-
view matching problem. This constrained optimization problem can be solved following a
standard E-M process [E3]. Specifically, at step ¢, with the cluster centers as C!,C?,--- ,CK,
assigning each data point equals to a linear optimization problem that can be solved with fast
network simplex algorithms [B]. Then, at step 41, C,l can be updated with

N yMi okt
Zl IZ] Ivvl] xl»/

Ct+1 ):{V 1):/ 1 l j
ck otherwise

it Y, Y W >0 )
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Figure 4: Graph representation of constrained cross-view matching: Solid arrows in (a) are
correct matches, dotted arrows are incorrect but possible matches. Red arrows in (b) and (c)
are two examples violating Rule 2 and Rule 3. The table in (d) visually explains Eq. 4.

where Wlk]t is the “assignment” variable at time ¢. Fig. 3 presents the result of the cross-view
2D matching under occlusion using Eq. 1 and our approach. Using the rules as constraints,
our approach successfully get rid of local minima and reaches the correct solution.

3.2 Camera Pose Estimation and Self-Validation

Camera Pose Estimation Once the cross-view human matching is solved, we associate the
joints of the matched people from different camera views to get 2D point correspondences.
We then can solve the relative pose between camera pairs using these point correspondences.
Formally, let the set of point correspondences of camera pair (a,b) be (p,, pp). We first solve
the essential matrix E,;, inside a RANSAC [[d] loop. Next, we decompose E,, into a relative
rotation matrix R,; and an up-to-scale relative translation 7,,. We repeat this process for all
camera pairs to get the 3D layout of the camera network.

Camera Pose Self-Validation Simply solving the relative poses between all camera pairs is
not enough. The point correspondences between some camera pairs can be “low quality".
For example, they can be less in number, or the points gather in a small region in the image.
In this case, the solved camera pose easily gets stuck to non-optimal local minima. We use a
“Camera Pose Self-Validation" process to address this.

Define the relative pose between camera pair (a,b) as M, which could be a local opti-
mum. To solve this, we first introduce another camera ¢ and solve the relative pose M, and
M.;,. Next, we indirectly obtain the relative pose of (a,b) using M, and M., and denote it
as M,.p. M, can be a better estimation than M, since (a,c) and (c,b) have higher-quality
point correspondences than (a, b). In this way, we can obtain a set of direct and indirect pose
estimations of (a,b): M = {M_p,Mycp,--- }. The idea is to let these estimations validate each
other. Specifically, we use M € M, that has the smallest average alignment angle with other
elements in M, as the final estimation of the relative pose between (a,b). We observe that
this self-validation process greatly improves the robustness of camera pose estimation.

3.3 Multi-View Aggregation and Bundle Adjustment

Multi-View 3D Pose Aggregation After solving relative camera poses, we can triangulate
the 3D human poses from any camera pair. However, not all people are visible to all cameras
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(a) 3D poses estimation from different camera pairs (b) Aggregation result

Figure 5: Illustration of multi-view aggregation. (a) shows 3D human poses estimated from
different camera pairs, (b) shows the pose estimation result after multi-view aggregation.

due to occlusion. We need to aggregate information from all camera views to estimate the
full-body pose of every person in the scene. We follow a two-step multi-view information
aggregation process to do that. First, we convert the 3D poses estimated from all camera
pairs to one common camera coordinate system using the relative camera poses. Second, we
use the fact that the length of a bone is fixed in the 3D space to solve the scale ambiguities and
merge the human poses from different camera pairs. Fig. 5 presents the result of multi-view
aggregation. The 3D human poses of all people are correctly estimated under occlusion.
Bundle Adjustment The last step of our approach is Bundle Adjustment [B4]. The multi-
view aggregation step simply puts 3D poses solved from different camera pairs together.
However, this may cause some poses to look unnatural or the relative positions between
different people to be incorrect. We thus use Bundle Adjustment to further fine-tune the 3D
human poses. Let the intrinsic, extrinsic, and distortion parameters of camera i be K;, M;, D;,
the 2D pose of person k in camera i be p; x, and the 3D pose of person k be P,. Assume that
the intrinsic and distortion parameters known for all cameras, we aim to minimize the L-2
distance between the 2D poses and 3D re-projection for all camera views:

min
MpP

N
i=1

K

1
ZAi,k'EHpi,j*”(MiaPkQKiaDi)”% (6)
k=1
where, 77(-) is the perspective projection function, A; ; = 1 if person k is visible from camera
i, otherwise, A;x = 0. Note that a camera may only view some joints of a person, so the
visibility of each joint needs to be considered independently. We use Eq. 6 for the ease

of understanding. We solve Eq. 6 using Levenberg—Marquardt algorithm [BT], which gives
globally optimized 3D human pose and 6 DoF relative camera pose.

4 Experiment

We evaluate our approach on three open datasets and compare it with previous works. Be-
yond this, we also evaluate our approach on three self-collected “wild" datasets.

4.1 Open Datasets

Campus dataset [0] captures three people walking and interacting with each other in an
outdoor environment from three calibrated cameras. We follow the same evaluation protocol
as previous works [H, 3, [3, EA] and use the Percentage of Correct Parts (PCP) as the metric.
Note that the estimated 3D human poses using our approach are with respect to one of the
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cameras. To compare with other works, we use the ground truth camera pose provided by
the dataset to convert our results to the same world coordinate system defined by the dataset.
Shelf Dataset [0] captures four people disassembling a shelf from five calibrated cameras.
We also use PCP as the evaluation metric for the Shelf dataset.

CMU Panoptic Dataset [d] captures people doing various activities in an indoor studio.
Following previous works [[3, Ed], we qualitatively evaluate our approach on this dataset.

Table 1: Comparison with other methods on the Campus and Shelf datasets. The reported
numbers are PCP values. Results of other methods are taken from according papers.

Campus | CamPose | Training | Actor I  Actor2 Actor3 | Average
Huang et al. [(d] v v 98.0 94.8 97.4 96.7
Tu et al. [ET] v v 97.6 93.8 98.8 96.7
Zhang et al. [E3] v v 98.2 94.1 97.4 96.6
Reddy et al. [E3] v v 97.9 95.2 99.1 97.4
Belagiannis et al. [@] v - 93.5 75.7 84.4 84.5
Ershadi et al. [3] v - 94.2 92.9 84.6 90.6
Dong et al. [[3] v - 97.6 93.3 98.0 96.3
Perez-Yus et al. [Ed] v - 98.4 93.4 98.3 96.7
Ours - | - | 990 947 996 | 918

Shelf | CamPose | Training | Actor1  Actor2 Actor3 | Average
Huang et al. [(d] v v 98.8 96.2 97.2 97.4
Tu et al. [E3] v v 99.3 94.1 97.6 97.0
Zhang et al. [E3] v v 99.3 95.1 97.8 97.4
Reddy et al. [E3] v v 99.1 96.3 98.3 98.2
Wu et al. [EF] v v 99.3 96.5 97.3 97.7
Belagiannis et al. [H] v - 75.3 69.7 87.6 77.5
Ershadi et al. [3] v - 93.3 75.9 94.8 88.0
Dong et al. [[3] v - 98.8 94.1 97.8 96.9
Perez-Yus et al. [EG] v - 98.9 92.3 97.8 96.5

Ours |

99.6 95.2 985 | 978

Table 2: Variants of our approach on the Campus and Shelf datasets. Oracle knows the
GT camera poses and evaluates cross-view matching. One-Step simultaneously estimates
camera and human poses using single-frame images. Two-Step estimates camera poses first.

| Campus | Shelf
Variants | Actorl  Actor2  Actor3 | Average | Actor1 Actor2 Actor3 | Average
Oracle ‘ 99.0 96.7 99.6 ‘ 98.4 ‘ 100.0 100.0 99.6 ‘ 99.9
One-Step 98.8 64.1 79.5 ‘ 80.8 ‘ 99.6 95.2 98.5 97.8
Two-Step 99.0 94.7 99.6 97.8 99.6 95.2 98.5 97.8

4.2 Comparison with state-of-the-art

Following previous multi-stage works [B, [3, [3, Ed], we quantitatively evaluate our ap-
proach on the Shelf and Campus datasets. Existing multi-stage works generally use the
3DPS model [O] for 3D human pose estimation, which implicitly requires camera poses for
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Open data

B s
P

Wild data

Figure 6: Qualitative evaluation of our approach on open and wild datasets. For each dataset,
the left and middle columns are the 2D poses before and after cross-view matching, the right
column shows the estimated 3D human poses.

geometric constraints. Compared with them, our approach does not assume known camera
poses. Tab.1 presents the evaluation results of our approach and other method. We also in-
clude four deep learning-based methods [, EX, B3, B3] in Tab.1 for a more comprehensive
comparison. The result shows that our approach reaches state-of-the-art performance. We
did not use camera poses or model training during our experiments. The result also reflects
the effectiveness of our cross-view human matching method.

4.3 Evaluation on wild data

We follow previous works [H, [3, [3, E4] and qualitatively evaluate our approach on the
Panoptic dataset. In addition, we also collected three wild datasets to evaluate the gener-
alization ability of our approach. The three datasets include one indoor dataset with three
static GoPro HEROS8 cameras, one outdoor dataset with four static GoPro HEROS8 cameras,
and another outdoor dataset with two static GoPro HERO8 cameras and one dynamic drone
camera. We name the datasets Office, Square, and Drone.

Fig.6 presents results of our approach on the three open datasets and the three wild
datasets. We assume unknown camera poses and use the same hyper-parameters for all
the datasets. The six datasets include a variety of settings, such as indoor and outdoor en-
vironments, small and large field-of-views, strong and weak lighting conditions, high- and
low-resolution images, static and moving cameras, etc. Our approach has shown good gen-
eralization ability across these settings.

4.4 Ablation

Usage of Method Tab. 2 presents ablation study results as guidance for using our approach.
Tab. 2 presents results of three variants of our approach. “Oracle" assumes the camera poses
are known and fixed for all video frames and only optimizes the human poses. Since the
GT camera poses are optimized together with human poses for each frame. The GT and
“Oracle" camera and human poses will differ slightly for each frame. The “One-Step" variant
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Campus Panoptic

Shelf
N s
(s

Figure 7: Qualitative comparison between the ground truth camera poses (top row) and the
estimated camera poses using our approach (bottom row).

simultaneously estimates 6 DoF camera poses and 3D human poses using single-frame multi-
view images. This variant suits scenarios when the number of people is large and people are
close to the cameras. We use this variant for the Shelf dataset. The “Two-Step" variant first
estimates the camera poses using multi-frame images, then solves the human poses. We use
this variant for the Campus dataset since the people are away from the cameras, making the
point correspondences low quality.

Camera Pose Estimation Camera pose estimation is an intermediate step of our approach.
The result of camera pose estimation will directly impact 3D human pose estimation. For a
more comprehensive understanding of the camera pose estimation, we present quantitative
comparison between GT and estimated camera poses in Fig. 7. Fig.7 compares the ground
truth and estimated camera poses. Since we assume the camera poses (w.r.t a pre-defined
world origin) unknown, in each dataset, we use one camera as the world origin: Shelf (cam-
era 1), Campus (camera 1), Panoptic (camera 1), Office (camera 2), Square (camera 2),
Drone (camera 1). The estimated camera poses are close to the GTs across six scenes.

S Summary

In this work, we have presented an approach for multi-view multi-person 3D human pose
estimation for camera networks of which the 6 DoF camera poses are uncalibrated. We have
introduced a constrained optimization formulation for solving the cross-view 2D matching
problem when geometric constraints are unavailable. We have introduced a camera pose self-
validation process to deal with the low-quality correspondences. We evaluated our approach
on three public and three wild datasets and provided guidance on the usage of our approach.

This work was funded in part by NSF NRI (202417) and Department of Homeland Security
(2017-DN-077-ER0001).
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