University

Background

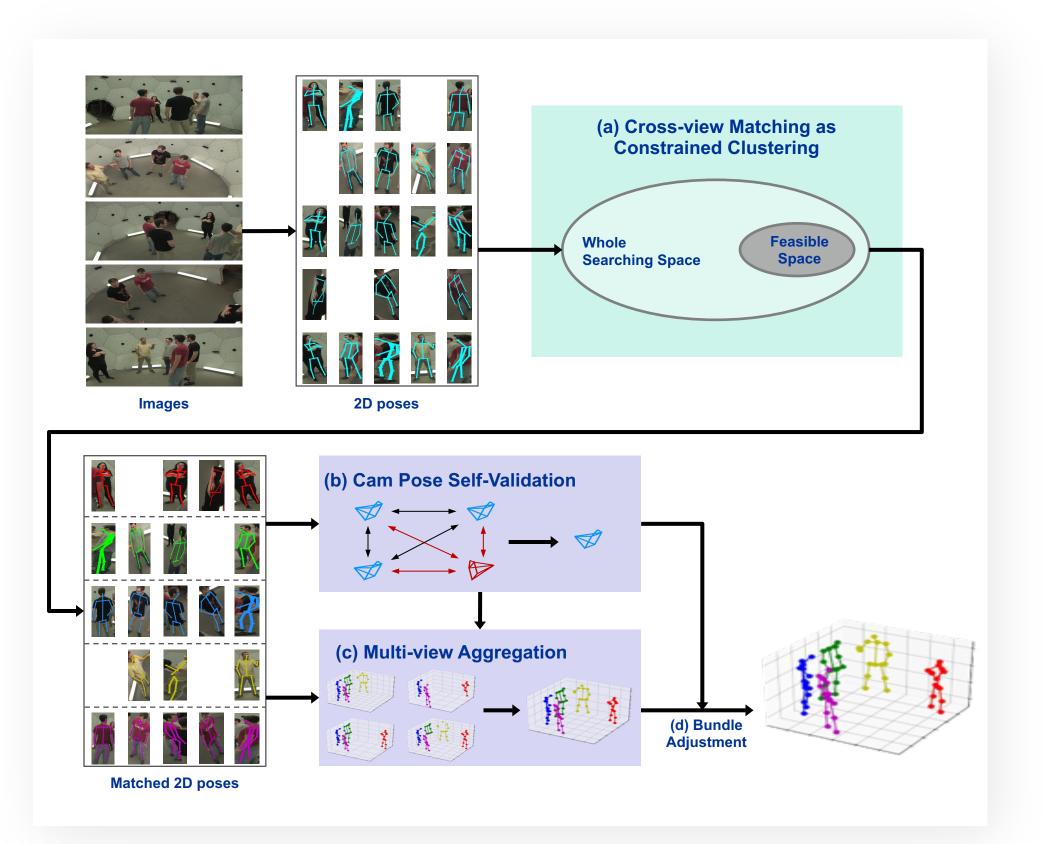
Carnegie Mellon

- 1. Multi-view multi-person 3D human pose estimation mostly done in controlled env
- 2. In many real-life scenarios, camera poses are not likely to be readily available
- 3. We targets uncalibrated cam networks

Method

Our method includes three steps:

- 1. Match human boxes through clustering
- 2. Associate body joints for point corresponds
- 3. Solve cam and human pose



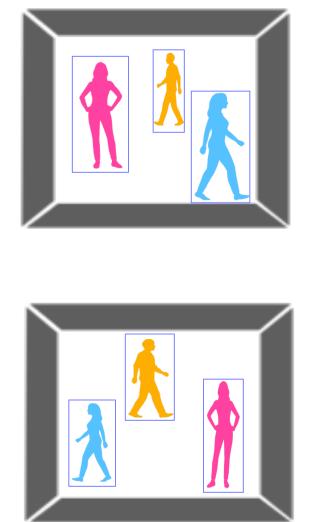
You are welcome to refer to our paper or reach out to the author (QR) for details. Email: xuyan@cmu.edu.

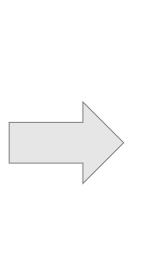
• **Constraint 1:** Cluster size larger than 2

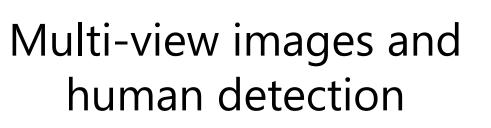
Multi-View Multi-Person 3D Pose Estimation with Uncalibrated Camera Networks

Yan Xu, Kris Kitani

Clustering can be used to match human bounding boxes across views and obtain body joints 2D-2D correspondences!









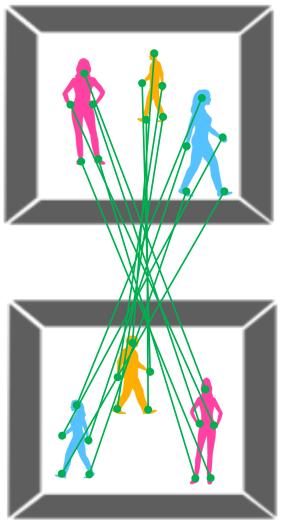
Match human across camera views through clustering

Cross-view matching constraints

At least two cameras for solving depth ambiguity

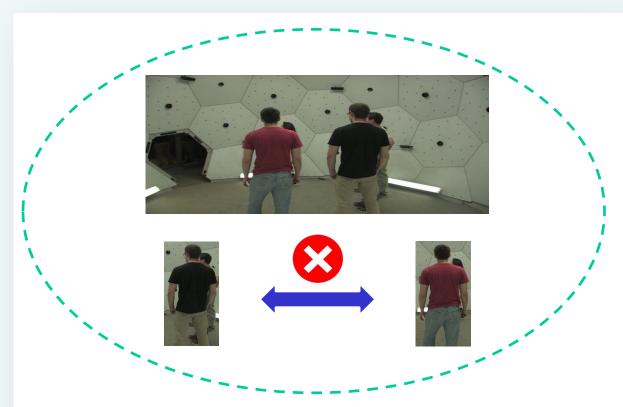
• **Constraint 2:** Cluster size smaller than number of cams

At most observed by N cameras



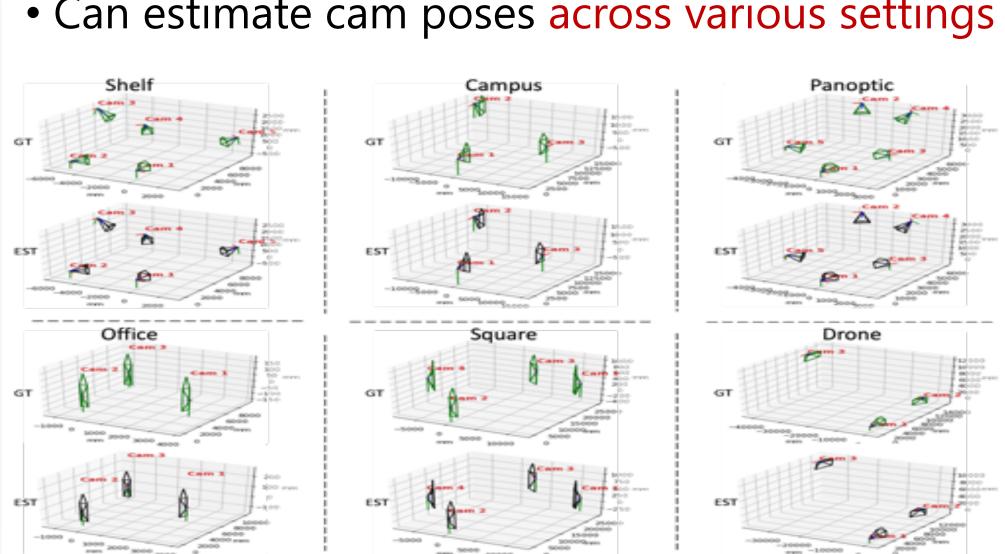
Associating body joints to obtain point correspondences

• Constraint 3: Ppl from same camera not in the same cluster



Observations from the same cam must be different ppl





Result

Reaches SOTA performance without requiring camera poses, 3D data, or network training

Campus	CamPose	Training	Actor 1	Actor 2	Actor 3	Average
Huang et al. [22]	1	1	98.0	94.8	97.4	96.7
Tu et al. [55]	1	~	97.6	93.8	98.8	96.7
Zhang et al. [63]	1	1	98.2	94.1	97.4	96.6
Reddy et al. [48]	1	1	97.9	95.2	99.1	97.4
Belagiannis et al. [4]	1	-	93.5	75.7	84.4	84.5
Ershadi et al. [15]	1	~	94.2	92.9	84.6	90.6
Dong et al. [13]	~	2	97.6	93.3	98.0	96.3
Perez-Yus et al. [46]	1	-	98.4	93.4	98.3	96.7
Ours	- 1		99.0	94.7	99.6	97.8
Shelf	CamPose	Training	Actor 1	Actor 2	Actor 3	Average
Huang et al. [22]	1	1	98.8	96.2	97.2	97.4
Tu et al. [55]	1	~	99.3	94.1	97.6	97.0
Zhang et al. [63]	1	~	99.3	95.1	97.8	97.4
Reddy et al. [48]	1	1	99.1	96.3	98.3	98.2
Wu et al. [58]	1	1	99.3	96.5	97.3	97.7
Belagiannis et al. [4]	1	-	75.3	69.7	87.6	77.5
Ershadi et al. [15]	1	-	93.3	75.9	94.8	88.0
Dong et al. [13]	1	-	98.8	94.1	97.8	96.9
Perez-Yus et al. [46]	1	-	98.9	92.3	97.8	96.5
Ours	-	-	99.6	95.2	98.5	97.8

• Generalizes well to the in-the-wild data

• Can estimate cam poses across various settings