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Abstract

There has been significant progress in creating machine learning models that identify
objects in scenes along with their associated attributes and relationships; however, there
is a large gap between the best models and human capabilities. One of the major reasons
for this gap is the difficulty in collecting sufficient amounts of annotated relations and
attributes for training these systems. While some attributes and relations are abundant,
the distribution in the natural world and existing datasets is long tailed. In this paper,
we address this problem by introducing a novel incremental active learning framework
that asks for attributes and relations in visual scenes. While conventional active learning
methods ask for labels of specific examples, we flip this framing to allow agents to ask for
examples from specific categories. Using this framing, we introduce an active sampling
method that asks for examples from the tail of the data distribution and show that it
outperforms classical active learning methods on Visual Genome.

1 Introduction
In active learning [41, 63, 75, 79, 83], a learning agent is provided with unlabeled samples,
from which it selects those it considers critical to improving its performance to be labeled by
a teacher (oracle). By selecting the most informative samples to be labeled, it is hoped that
the agent can achieve better performance with less data. However, in practice, the extra com-
plexity of active learning approaches often outweigh their benefits. In our view, the power of
active learning is tempered by the framing of the classical machine learning problems where
it is often applied. Namely, a classification problem with few classes, with loss measured in
average classification accuracy on the test distribution, and a repertoire of questions of the
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Figure 1: In classical active learning, an agent selects examples that it is most uncertain
about to be labeled. Conversely, we allow agents to ask for examples at the category level
instead of the example level. We train agents to predict attributes and relations in scenes.
Our framing allows an agent to ask for an example of a rare category “eating” and an oracle
provides an example of this predicate.

form “what is the label of example i?”. This is in contrast to the “active learning” of humans,
who have access to extremely rich supervision beyond asking for the label of an example.

In this work, we study the problem of learning to predict objects, attributes, and relations
in visual scenes. The set of possible attributes and relations is long-tailed (that is, there are
many attributes and relations, with many categories containing very few samples), and its
structure suggests more sophisticated questions a learning agent might ask. For example, an
agent might ask for an example from a particular label it is uncertain about, instead of a par-
ticular sample it is uncertain about. By asking for class labels instead of instances, an agent
can explicitly sample from more underrepresented classes, which is useful for long-tailed
data. We show that several classical active learning methods do not perform significantly
better than random sampling; and in particular fail to explore the tail of the distribution. By
simply switching the framing to allow the agent to ask for an example for an attribute or rela-
tion (rather than ask for the true attribute or relation for object instances in an image), we can
significantly improve results on the tail of the distribution, without sacrificing accuracy on
the natural distribution (see Fig. 1). This is critical as visual scenes are typically long-tailed
and we desire methods capable of performing well on the tail of the distribution.

We make the following major contributions: We introduce a novel incremental active
learning framework, coined “Query-by-Category” (QBCat), that allows agents to ask for
labels at the category level instead of the example level. To demonstrate the effectiveness of
our framework, we study active learning on a new domain: training agents to predict objects,
attributes, and relations in visual scenes. Since the distribution of attributes and relations is
naturally long-tailed, we introduce two methods to enable incremental long-tailed learning
including class re-balancing and bias correction. Finally, we use our Query-by-Category
framework to introduce a new active sampling approach that samples efficiently from the tail
of the attribute and relation class distributions. We experimentally validate the effectiveness
of our setup, which outperforms classical active learning methods on Visual Genome [38].

Motivation for Query-by-Category Learning. In conventional active learning, the
agent computes uncertainty scores over unlabeled examples to select examples to be labeled.
While straightforward, this approach has drawbacks: a representative set of unlabeled exam-
ples must be collected, the learner must compute uncertainty scores for the examples, and the
learner must have robust uncertainty estimates to select examples. These tasks can be time
consuming for both annotators and the learner. Moreover, the gamut of queries the learner
can ask for is limited, i.e., the model simply asks for the label of an unlabeled example.
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We argue that it could be beneficial to allow a model to ask directly for examples from
specific classes. This eliminates the need for model inference on unlabeled data. Further,
by asking for classes directly, the agent will likely see a wider variety of classes, which is
critical in long-tailed settings. Just as in conventional active learning, the primary focus of
our framework is on learning efficiency rather than the speed in which an oracle can provide
annotations. Moreover, in a practical implementation, an annotator could be augmented
with a search engine or lots of thumbnail images to quickly find images of a specific class.
Alternatively, the learner could be provided with a search engine or database to gather labeled
data for itself. We leave these implementations for future work; here we are first interested
in determining if our framing yields performance benefits over conventional active learning.

2 Methods
We operate on (subject, predicate, object) triples in images. The subject will be a bounding
box marking a region of pixels (e.g., an object) in an image. The object might be another
bounding box if the predicate is a spatial relationship, like “to the left of”; or a string like
“blue” (which could correspond to a predicate like “has color”). If the object is a string, we
use the notation (subject, predicate, attribute). We do not consider higher arity relations or
relations that cross multiple images. The learner will be tasked with predicting the miss-
ing element in an incomplete triple. We denote the triple with two known elements as the
question and the correct missing element as the target. We use s, o, p, and a to denote sub-
jects, objects, predicates, and attributes respectively. This yields six unique question types:
(?, p,o) and (?, p,a) where the target is a subject, (s,?,o), and (s,?,a) where the target is a
predicate, (s, p,o?) where the target is an object, and (s, p,a?) where the target is an attribute.

Rather than assuming the labeled data is fixed at the start of learning, we perform incre-
mental active learning, i.e., the agent asks for a fixed number of annotations over a sequence
of increments. However, we will see that classical active learning techniques do not signif-
icantly improve on random selection, in part due to the long tail of attributes and relations.
Our main result is that asking for examples of a triple (described in Sec. 2.3) is more effective
at exploring the tail of possibilities than asking for triple completions. However, this active
sampling strategy biases the model to the tail and reduces performance on the natural distri-
bution. We will see that combined with proper re-biasing techniques, we get the best of both
worlds: improved tail performance without sacrificing accuracy on the natural distribution.

2.1 Incremental Training Procedure
Let DL and DU denote labeled and unlabeled subsets of the dataset D = DL ∪DU , respec-
tively, where D is a dataset of triples. The “unlabeled” triples correspond to the “questions”
from above; whereas “labeled” examples are the complete triple (question and target to-
gether). For the rest of the paper, we will use “natural distribution” to refer to either the base
distribution on D or to targets in D; and the “head” to refer to the elements in D with the
most common targets (or to those targets themselves), and the “tail” to refer to other targets.

In the real world, an agent would receive a stream of inputs for which it could incremen-
tally ask questions to improve its performance. Motivated by this, we perform incremental
active learning as follows. We first pre-train the model on DL drawn from the head of the
training data. We wish to simulate the setting where we first collect some seed data (which,
following the natural distribution, would mostly come from the head), and then the agent
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actively learns starting from a model pre-trained on the seed data. After pre-training, we ini-
tialize a replay buffer with all pre-training data. Then, an active sampling strategy (described
in Sec. 4.1) selects B samples from the unlabeled dataset (DU ) to be labeled by an oracle.

After an oracle labels the B samples, training happens in two stages: cross-validation and
full training. Cross-validation determines the number of epochs for full training to prevent
over-fitting on new samples (see Sec. S2.1). After cross-validation, we reset model param-
eters to the beginning of the increment, retrain with the validated hyper-parameters, and
optionally re-bias to the natural distribution (see Sec. 2.2). We then evaluate the model (see
Sec. 4) and put all newly labeled examples in the replay buffer and repeat. The process of
adding new data, cross-validation, training, and optional re-biasing is called an “increment.”

2.2 Methods to Handle Class Imbalance
Because of the long-tailed data distribution, naive training on increments leads to over-fitting
on the head classes and hinders learning after the first increment (see Sec. S4.4). To address
this, we re-balance mini-batches during increments such that there are equal amounts of
old (frequently represented) data and new (possibly less frequently represented) data (see
Sec. S2.2). This allows learning past the first increment; but results in the model learning a
distribution different from the natural distribution. To remedy this, we perform post-hoc bias
correction [28, 49, 57, 72, 73, 80, 84] to adjust model outputs for the natural distribution.

Bias Correction. We perform bias correction in two stages. After training has finished,
we save a copy of all model parameter weights. We then fine-tune the model for a small
fixed number of epochs on all data in the replay buffer using standard mini-batches (i.e.,
from the natural distribution). After fine-tuning, we perform class-specific bias correction
on predicates for (s,?,o) questions and on attributes for (s, p,a?) questions since they require
a class as the answer. Correction is performed on these two question types independently.

The class-specific bias correction stage learns to adjust class-specific distances to the
natural distribution. Our setup is reminiscent of Platt scaling [56], which has been effective
for model calibration [22]. Specifically, we compute network predictions for all (s,?,o) or
(s, p,a?) questions. We then compute target embeddings for all predicates or attributes in
the class dictionary. We then compute the negative Euclidean distance of each predicted
embedding to all target embeddings, which yields a score for each class. Finally, we train
two parameters per class, α and β , to correct each class score: s←αs+β . These parameters
are trained by minimizing a cross-entropy loss between the corrected score and the true label.
After these stages, we evaluate the model and reset the model parameters back to their values
from before bias correction. Resetting the parameters allows the model to perform better on
balanced distributions and only use bias correction for evaluation in imbalanced settings.

2.3 Query-by-Category Framework
A challenge in using conventional active sampling methods is that they rely on the following
assumptions: they are being applied on a balanced set of classes, performance is measured
using accuracy on the test data, and they ask for the label of a specific example. We argue
that long-tailed distributions are more common in the real-world and agents should have the
ability to ask questions beyond asking for just a label. To this end, we propose the Query-by-
Category (QBCat) active learning framework that allows a learner to ask for examples from
specific classes (Fig. 2). To query an oracle for P samples, the protocol is: 1) provide a dictio-
nary of attribute and predicate classes to the learner; 2) the learner computes an uncertainty
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Figure 2: In classical active learning, a model computes uncertainty scores for unlabeled
examples and an oracle labels uncertain examples. In our framework, a model computes
uncertainty scores for classes and an oracle provides examples from uncertain classes.

score for each class; 3) the learner uses weighted random sampling with class uncertainty
scores as weights to select the class distribution for the P samples; 4) the learner queries an
oracle for P samples using the class distribution from 3); and 5) the provided samples are
combined with replay data and the model is updated. See Alg. S1 for an overview.

Using this framework, we propose a simple active sampling method called QBCat-Tail
that prioritizes rare classes. This method assumes that a pre-training phase occurred on head
classes of the dataset. During active learning, it assigns class uncertainty scores to tail classes
uniformly at random. An oracle then provides the learner with samples from the selected
classes uniformly at random. While simple, classical active learning methods often do not
consider the label distribution of the data to be learned, which can hinder their performance.

2.4 Model Architecture
Our model architecture takes an incomplete triple (question) as input and outputs a prediction
for the missing element in the triple (see Fig. 3). Each subject, object, or predicate is repre-
sented as a vector. For subjects and objects that are bounding boxes, we ROI pool ground
truth box features from a Faster R-CNN object detector [58] pre-trained on MS-COCO [40]
(see Sec. S2.4). For predicates and objects that are strings, we use a lookup-table embedding.

Each triple contains two known elements and one missing element. The elements are
either subject/object vectors s,o ∈ Rdo , a predicate label p ∈ R, or an attribute label a ∈ R.
We define a feed-forward network FO : Rdo → Rd and two embedding layers, FA and FP,
to embed subjects/objects, attributes, or predicates in d-dimensional space respectively. We
define one trainable N ∈ Rd (“Null”) per data type to represent the missing triple element,
i.e., NA, NP, and NO represent a missing attribute, predicate, or subject/object respectively.

The two known elements in the triple are embedded in d-dimensional space using the
corresponding embedding network/layers, i.e., hs = FO (s), ho = FO (o), hp = FP (p), or
ha = FA (a). Then, the two embedded representations are concatenated with the appropriate
trainable vector N to yield an embedded vector h ∈ R3d , where N is concatenated in the exact
location of the missing triple element, e.g., the question q = (s,?,o) maps to h = [hs;NP;ho].
This vector h is processed by another feed-forward network G : R3d → Rd , which outputs
a final predicted representation for the missing triple element. Similarly, we define a tar-
get embedding feed-forward network FOT and two target embedding layers FAT and FPT to
embed target subject/objects, attributes, and predicates in d-dimensional space, respectively.

Metric Learning Loss. Given a mini-batch of M questions, a predicted embedding hq,
its associated target embedding tq, and all pairs between hu and tv in the mini-batch, we
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Figure 3: Our architecture for a mini-batch with M questions (triples) and targets. Question
elements are processed by their respective embedding network/layer (FO, FP, FA), concate-
nated with a trainable Null, and processed by G, which outputs predicted embeddings.
Targets are processed by their respective embedding network/layer (FOT , FPT , FAT ) to yield
target embeddings. A cross-entropy loss is then computed between a pairwise distance ma-
trix of all predicted and target embedding pairs (D) and a target identity matrix via Eq. 1.

compute the categorical cross-entropy loss as:

L=− log

(
exp
(
−∥hq− tq∥2

)
∑u,v exp(−∥hu− tv∥2)

)
, (1)

which encourages positive pairs to be embedded close to one another in feature space. This
is equivalent to Neighborhood Component Analysis loss [20]. Any distance function could
be used, but Euclidean distance worked best in early experiments, so we use it here.

Model Inference. We evaluate the model in three ways depending on if the answer is a
subject/object, a predicate, or an attribute. First, we compute a predicted embedding for the
question. When the target is a subject/object, we exploit the fact that the answer is limited
to objects in the same image and compute target embeddings for each object in the image.
For predicate/attribute targets, we compute target embeddings for all predicates/attributes.
We then compute the negative Euclidean distance between the predicted embedding and all
question-specific target embeddings to create a score vector for evaluation.

3 Related Work
Link Prediction. In link prediction, a neural network is provided with two objects and
it predicts the relationship (“link”) between them. In our setting, a network performs link
prediction between objects and node prediction of objects and attributes. Early link pre-
dictors were shallow networks that modeled relationships using simple algebraic opera-
tions [4, 42, 52, 54, 70, 78, 81] (see [53] for a review). Recently, deep networks have demon-
strated more success for modeling relationships due to their expressive power. Knowledge
Vault uses a multi-layer perceptron to learn from concatenated subject, relationship, and ob-
ject embeddings [15]. It has been applied to textual data. We extend Knowledge Vault to
visual scenes due to its simplicity, which allows us to focus on active sampling.

Long-Tailed Learning. In long-tailed learning, methods tend to overfit to frequent
classes and not generalize to rare classes. There are three main ways to train with imbalanced
data (see [85] for a survey): 1) re-balancing classes (e.g., via re-sampling [7, 16, 30, 48, 66],
loss adjustment [6, 11, 37, 71], or logit adjustment [28, 49, 57, 72, 73, 80, 84]), 2) transfer-
ring information from a pre-training stage or from more to less frequent classes [44, 77], or 3)
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improving model performance via classifier design [35, 43, 80] or ensembling [23, 76, 86].
Re-balancing strategies are simplest to implement and usually achieve comparable perfor-
mance to more complex methods, so we use them here. Only a few long-tailed active learn-
ing approaches have been proposed [1, 3, 9, 21]. Similar to [1], we modify the training setup
to make methods more amenable to imbalanced data.

Active Learning. Active sampling methods attempt to select the fewest informative
examples to be labeled by an oracle [10, 41, 63, 75, 79, 83]. Active learning strategies
fall into three categories: model uncertainty [12, 13, 14, 39, 61], diversity-based sam-
pling [21, 24, 51, 62], and expected model change [18, 34, 65, 74]. Uncertainty can be
quantified using entropy [27, 45, 64], discriminator scores [68], margins between class prob-
abilities [32, 59], ensembling [2, 19], or model loss [83]. Uncertainty sampling is simple
and easy to use with neural networks, so we use it here. Beyond this, there have been
active sampling methods designed to discover rare classes and evaluated on standard clas-
sification tasks [26, 29, 33]. While active learning has been widely explored for classifica-
tion [2, 62, 75], detection [17, 25, 60, 69], and semantic segmentation [36, 46, 67, 82], its
exploration for node/link prediction has been limited [5, 8, 47, 55]. Most similar to our work
are [47, 55], which meta-learn an uncertainty-based active sampler. Conversely, we are the
first to perform active learning for node/link prediction on visual scenes.

4 Experimental Setup

4.1 Baselines

Active sampling is performed per question type, i.e., we select an equal number of samples
from each question type from Sec. 2. We compare four strategies that assign a weight of
how likely each unlabeled sample is to be chosen: Random is simplest and uses uniform
random weights. Least Confident computes the highest class score for an example, which
is then inverted so examples with the smallest top scores are prioritized. Minimum Margin
computes the margin between the highest and second highest score for an example [32,
59]. We invert this score such that samples with smaller margins receive larger weights.
Maximum Entropy computes the entropy of softmaxed scores across classes [45, 64, 83].

We first assign a weight to each sample in the unlabeled dataset using one of these strate-
gies. We then shift each weight, wi, such that the smallest weight across samples is 1:
wi← wi +(1−min j w j). Probabilities are then defined as pi = wi/∑ j w j and weighted ran-
dom sampling is used to select samples to be labeled by an oracle. We also compare two
baselines. The pre-train baseline is trained on only pre-training data and evaluated imme-
diately after. Pre-train is used to initialize the model for each active learner and is a lower
bound. We also train an offline model on all training data, which is an upper bound. Both
models are trained with standard mini-batches without bias correction.

4.2 Visual Genome Dataset

We conduct experiments on Visual Genome 1.4 [38]. We pre-process the dataset following
[31], i.e., we partition the data into train (80%), val (10%), and test (10%) sets, and filter
objects based on size, number of occurrences, and number of relationships. This yields
62,565 train, 5,062 val, and 5,096 test images. We then form three questions from each
relationship triple and each attribute triple in an image. This yields 3,474,969 train, 279,273



8 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

Figure 4: Average Ω performance of active learners over all 10 increments and five question
types evaluated on the full and tail test sets.

val, and 281,739 test questions (triples). The final dataset has 253 unique attribute classes
(which includes object classes) and 46 unique predicate classes. All (s, p,a) triples use the
same predicate (“has attribute”). Histograms of attributes and predicates are in Fig. S1.

4.3 Evaluation Protocol and Metrics

We compute performance on the full test set, as well as a test set consisting of samples
from the tail of the attribute and predicate distributions. We define head classes as those
containing more samples than the mean across counts over all classes for predicates and
attributes separately. This yields 66 head and 187 tail classes for attributes and 9 head and
37 tail classes for predicates. More details and class lists are in Sec. S3.

Given score vectors (from Sec. 2.4) and one-hot encodings of the answer, we compute
two metrics for each question type: area under the receiver operating characteristic (AUROC)
curve and mean average precision (mAP). When a subject/object is the target, we use sample-
wise averaging across questions since images do not contain a uniform number of objects,
i.e., score vectors are different lengths. When a predicate or attribute is the target, we use
micro averaging. mAP emphasizes positive classes, making it more ideal for long-tailed
datasets. It is also useful to summarize performance over increments. To do this, we define
performance of an offline upper bound as γoffline. Given the performance of a learner at
increment t as γt , overall performance is given by: Ω = 1

T ∑
T
t=1 [1− (γoffline− γt)] over T

increments. If the learner performed as well as the offline method, then Ω = 1. Higher Ω

values are better. Ω makes comparisons across question types, metrics, and test sets easier.

5 Results
Each experiment was conducted with 10 random network initializations and we report the
average over runs. After pre-training, all methods performed incremental active learning over
10 increments, where each active sampling method chose 100 samples from each of the six
question types at each increment (i.e., 600 selected samples total per increment). Additional
implementation details and hyper-parameters are in Sec. S2. While (s,?,a) questions are
used during training, we do not report performance on them since it is uninteresting, i.e., it
only requires the model to output the predicate “has attribute.” Our QBCat-Tail method uses
the class breakdown from Fig. S1 for determining which classes belong to the tail.

In Fig. 4, we plot the Ω scores of each method averaged over all five question types
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(a) Full Test
(s, p,a?)

(b) Full Test
(?, p,o)

(c) Full Test
(s,?,o)

(d) Tail Test
(s, p,a?)

(e) Tail Test
(?, p,o)

(f) Tail Test
(s,?,o)

Figure 5: Incremental performance on the full and tail test sets for various question types.
Each curve is the average over 10 runs with shaded standard error. For clarity, the offline
upper bound has been removed from the tail plots for (s, p,a?) and (s,?,o), where the offline
baseline achieved an average mAP of 0.312 and 0.263 respectively. More plots are in Sec. S4.

on each test set using AUROC and mAP. Raw Ω scores are in Table S2. When evaluated
on the tail test set, our QBCat-Tail method outperforms baselines by a large margin. For
example, it outperforms the closest baselines by 6.7% in average Ω AUROC and 3.4% in
average Ω mAP. While performance differences are smaller on the full test set, our QBCat-
Tail method outperforms the closest baselines by 2.6% and 1.2% in average Ω AUROC
and mAP, respectively. The main advantage of our method is its ability to achieve strong
performance on tail data without sacrificing performance on the natural data distribution.
This strong performance could be a result of training on a balanced distribution of head and
tail data, which could reduce over-fitting on head data. By reducing over-fitting, the model
could be learning more generalized representations that improve overall performance.

To explore performance differences further, we show mAP learning curves for each ac-
tive learning method in Fig. 5. Additional learning curves are in Sec. S4 and show similar
trends. Across all increments, our QBCat-Tail method either rivals or outperforms alterna-
tive methods across question types and test sets. When evaluated on the full test set, our
QBCat-Tail method outperforms all methods by a large margin on box-based questions (i.e.,
(?, p,a), (?, p,o), and (s, p,o?)). For questions where the agent must predict a predicate
(s,?,o) or an attribute (s, p,a?), performance of the QBCat-Tail method on the full dataset
is similar to other active learning strategies. QBCat-Tail achieves significant performance
improvements across question types on the tail test set. Overall, box-based questions appear
to be easiest, yielding the highest performance values, while the (s,?,o) and (s, p,a?) ques-
tions are harder, yielding the lowest performance values. This implies that it is more difficult
for learners to predict specific attribute or predicate classes. Performance differences among
baseline active learners across test sets are minimal. This is because baseline methods do
not explore the tail of the distribution and oversample head data (see histograms in Sec. 5.1).
Additional studies of active learning baselines on only tail data are in Sec. 5.1.

5.1 Additional Studies
Next, we study several components of our training procedure to identify which yield the
most improvement. In Table 1, we study the Ω performance of QBCat-Tail in four settings:
Standard Mini-Batches uses standard mini-batch construction, i.e., batches are sampled
uniformly at random without replacement. Without Bias Correction uses re-balanced mini-
batches without bias correction. Main Setup uses re-balanced mini-batches, bias correction,
and selects tail classes uniformly at random. Frequency Probabilities assigns each tail class
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Table 1: Ω mAP performance for various versions of our QBCat-Tail method. Main Setup
denotes the main model that uses re-balanced mini-batches, bias correction, and uniform
class probabilities. Each result is the average over 10 runs.

STUDY (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?)

Full Test Set
Without Bias Correction 0.864 0.871 0.941 0.780 0.941
Standard Mini-Batches 0.870 0.952 0.968 0.919 0.955
Main Setup 0.919 0.959 0.985 0.958 0.979
Frequency Probabilities 0.921 0.962 0.990 0.973 0.981

Tail Test Set
Without Bias Correction 0.770 0.692 0.948 0.796 0.916
Standard Mini-Batches 0.669 0.691 0.921 0.756 0.894
Main Setup 0.819 0.695 0.965 0.776 0.949
Frequency Probabilities 0.828 0.696 0.971 0.783 0.954

a probability equal to num_samples_in_class
num_samples_in_dataset with re-balanced mini-batches and bias correction.

On the full test set, performing bias correction is critical to model performance. Without
bias correction, performance on (s,?,o) and (s, p,a?) questions drops by 17.8% and 8.8% re-
spectively. On both test sets, using standard mini-batches yields slightly worse performance
than using re-balanced batches, with performance on (?, p,a) questions being the most neg-
atively impacted. Surprisingly, performing bias correction improves performance on the tail
classes for all question types except (s,?,o). Frequency-based probabilities yield slightly
better performance than uniform probabilities with a maximum performance difference of
1.5% across questions and test sets. Future work could explore more methods for assigning
tail probabilities (e.g., using class counters, pseudo-labeling, etc.).

6 Discussion and Conclusion
In this work, we introduced a new active learning framework and demonstrated its effec-
tiveness on a new problem domain (active learning for visual triple completion). Specifi-
cally, we proposed new methods and training paradigms for incremental active learning of
long-tailed attributes and relationships. We then introduced the Query-by-Category (QBCat)
active learning setup which changes the framing of how agents ask oracles for more training
data. It allows models to ask for an example of a particular class instead of asking for the
label of an uncertain example. We then proposed the QBCat-Tail method and showed that
when combined with suitable re-biasing, it performs comparably to existing active learning
methods on the natural long-tailed distribution, and demonstrates significant performance
improvements on tail classes. These contributions provide future researchers with a new ac-
tive learning protocol, as well as a framework for studying how agents should ask for labels.

In the future, it would be interesting to extend to settings where more than one element
in a triple (or a higher order relation) is missing, or to relations spanning multiple images.
While we focused on uncertainty-based active learning methods due to their simplicity, it
would be interesting to explore diversity-based methods that could exploit the metric space
learned by our model. We demonstrated that asking for specific classes improved perfor-
mance over standard active sampling methods. It would be interesting to develop methods
that exploit this finding to improve tail performance further. Overall, our framing encourages
future studies on how agents should pose questions to an oracle to best improve performance.
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