
HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S1

Supplemental Material

S1 Algorithmic Overview of the Query-by-Category
Active Learning Protocol

As basic research, this paper is focused on the Query-by-Category framework and under-
standing its potential benefits over conventional active learning. Conventional active learn-
ing assumes an oracle that annotates selected examples between learning rounds. Here, we
assume an oracle provides a list of classes to be identified. The algorithm then requests sam-
ples from specific classes in each round, and the oracle then provides inputs containing those
classes.

A high-level overview of the Query-by-Category active learning protocol is in Alg. S1.
To query an oracle for P samples, the protocol is as follows: 1) provide a dictionary of
attribute and predicate classes to the learner; 2) the learner computes an uncertainty score
for each class; 3) the learner uses weighted random sampling with class uncertainty scores
as weights to select the class distribution for the P samples; 4) the learner queries an oracle
for P samples using the class distribution from 3); and 5) the provided samples are combined
with replay data and the model is updated. Note that this setup requires an initial class
dictionary to be provided to the agent. This class dictionary could be initialized using an
existing dataset and a human annotator could add more classes to the dictionary over time as
scene conditions or objects change.

Algorithm S1: Query-by-Category Active Learning Protocol
Data: Dictionary of classes (C); Dictionary of question types (Q); Number of active

samples to query per increment per question type (P), Replay buffer
containing all pre-training data (R)

Result: Updated model
while increment do

Initialize empty dictionary U for class uncertainty scores;
for c in C do

Compute uncertainty score s for class c;
Store uncertainty score: U [c]← s;

end
Initialize empty active learning data buffer B;
for q in Q do

Sample P classes randomly using class uncertainty scores U as weights;
for c in P do

Query oracle for example from class c of question type q;
Add new example to buffer B;

end
end
Update model with data from B andR;
Add data from B to replay bufferR;

end



S2 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

S1.1 QBCat-Tail Active Sampling

Using the Query-by-Category active learning framework, we propose the QBCat-Tail active
sampling method that assigns class uncertainty scores to tail classes uniformly at random.
In a deployed setting, one way the QBCat-Tail method could identify samples as belonging
to tail classes is by keeping a count of how many times each class in the class dictionary is
visited. Those classes which have been rarely visited would be considered tail classes and
assigned a uniform random probability of being selected. Those classes which have been
frequently visited would be considered head classes and assigned a probability of zero. Note
that QBCat-Tail is just one way of assigning class uncertainty scores and alternative ways of
assigning scores using the QBCat framework is an area for future work.

S2 Method Details
We include additional details related to our training paradigm, model architecture, and im-
plementation details in the following subsections.

S2.1 Cross Validation

To perform cross-validation, we first use stratified random sampling to split the experience
replay buffer and newly labeled samples into k separate folds each, where k is a hyper-
parameter. Then, we combine (k−1) folds from the experience replay buffer and new sam-
ples together to form a training set, and use the remaining held-out sets as a validation set.
We train the model on the training set and compute validation loss each epoch. Once the
validation loss has not improved for a pre-defined number of epochs (patience), we record
the epoch where the model achieved the best validation loss and end cross-validation. While
cross-validation is traditionally performed in k separate rounds, we found that using a single
round of training/validation was sufficient for determining the optimal number of epochs and
reduces compute time, so we use this approach.

S2.2 Re-Balanced Mini-Batches

Since our active sampling methods select very few examples to be labeled in each increment,
there is a large imbalance between old samples in the experience replay buffer and newly
labeled examples. Further, there is a large imbalance between samples from more frequently
and less frequently represented classes due to the long-tailed nature of the training data. To
deal with these data imbalances, we perform an epoch in the following way. We iterate over
newly labeled examples by selecting a fixed number M/2 at each iteration to be included in a
mini-batch of size M. After we have iterated over all new data, we shuffle the new data and
begin another epoch.

Simultaneously we iterate over all data in the experience replay buffer. For each batch
selected from the replay buffer, we first perform hard negative mining to determine which
pairs of samples are the most difficult in the batch. Given a batch of replay samples, we
perform hard negative mining in the following way. We first find all samples in the mini-
batch where the correct answer is not in the top-ℓ predictions output by the network and
pair the question example with its top predicted incorrect answer. These hard negative pairs
are then added to a buffer of negatives that is updated each iteration. We use a buffer of



HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S3

negatives to keep track of positive/negative pairs that the model struggles with throughout
the increment to ensure that the model maintains performance on previous data.

After hard negative mining, we randomly select M/4 pairs of negatives from the buffer
to be included in the mini-batch with new examples (i.e., M/2 total old samples). After we
combine the new samples with the negatives, we update the model for a single iteration.
Once we have iterated over the entire experience replay buffer, we shuffle the replay buffer
data and begin iterating again. We empty the hard negative buffer at the end of each active
learning increment. Since our cross-validation procedure faces the same imbalance problem
of many old samples to very few new samples, we use this same re-balanced mini-batch
selection procedure to form balanced batches during both the training and validation stages
of the cross-validation training stage. We compare this re-balanced mini-batch selection
process (which presents an equal number of new and old examples to the model in each
batch) to standard mini-batch creation, i.e., uniform random sampling over a combination of
new and old data, in our experiments (see Fig. S5 and Sec. S4.4).

S2.3 Model Training

Here, we describe the model training procedure from Sec. 2.4 in more detail. Given a mini-
batch of M questions and associated targets, we train the model using metric learning. More
specifically, for the M questions, we compute the M predicted representations in embedding
space and their associated M target representations. We then compute pairwise distances be-
tween all combinations of question and target representations using the Euclidean distance
metric. That is, we compute a distance matrix D ∈ RM×M such that values on the diagonal
of the matrix indicate the distance between a predicted embedding representation and the
true associated target representation. Values on the off-diagonal indicate distances between
unassociated question/target pairs. This formulation allows us to treat distances between
true questions and targets as positives during training, while distances between unassociated
questions and targets are treated as negatives. Formally, given a mini-batch of M questions
and targets, we compute the loss for a positive pair as follows. First, we compute a question
embedding hq and its associated target embedding tq. Then, given all batch pairs between
question embeddings and target embeddings located at indices u and v respectively, we com-
pute a categorical cross-entropy loss for the positive pair as:

L=− log

(
exp
(
−∥hq− tq∥2

)
∑u,v exp(−∥hu− tv∥2)

)
, (S1)

which encourages positive pairs to be embedded closer to one another in feature space. This
formulation is equivalent to Neighborhood Component Analysis loss [20]. While any dis-
tance function could be used, we found Euclidean distance worked best in early experiments,
so we use it here.

S2.4 Implementation Details

All feed-forward neural networks in the model architecture use the same network consisting
of two layers with 256 units in the first layer and 128 units in the second layer. The first layer
is a fully-connected layer with batch norm and a Mish activation function [50], which helps
prevent gradient vanishing. The second layer is the same as the first, but replaces the Mish



S4 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

activation with a sigmoid activation such that all output vector entries are between zero and
one, which is useful when computing Euclidean distances between vectors.

For cross-validation and full model training, models are trained using stochastic gradient
descent with a learning rate of 0.01, a weight decay factor of 10−5, a momentum value of
0.9, and a re-balanced mini-batch size of 512 (i.e., 256 new samples and 256 old samples).
Before selecting 256 old samples to be included in the mini-batch, we use a batch size of 800
samples from the replay buffer to perform hard negative mining. For choosing the number
of training epochs, we use a cross-validation k value of 5, a cross-validation patience of 10,
a validation batch size of 512, and set a maximum limit of 100 epochs. For hard negative
mining, we use a top-ℓ value of 3. For the first stage of bias correction, we use the Adam
optimizer and train for 10 epochs with a learning rate of 0.01 and cosine annealing. For the
second stage of bias correction, we use the LBFGS optimizer and train for 500 iterations
with a learning rate of 0.01.

For pre-training models, offline upper bound models, and experiments using standard
mini-batches, we use a batch size of 256. We pre-train on 2,500 samples randomly selected
from each head predicate class (minus “has attribute”) and head attribute class, which results
in 185,000 pre-training samples. We found pre-training for 1 epoch was sufficient for model
convergence and using more epochs for pre-training caused overfitting to the head classes.
We train the offline upper bounds for 25 epochs.

To encode subjects and objects as vectors, we first pre-train a Faster R-CNN object detec-
tion model [58] with a ResNet-50 backbone on the MS COCO dataset [40]. We then use the
Faster R-CNN model to extract 1024-dimensional feature vectors after the ROI pooling layer
for all ground truth object boxes in all images. Since we are focused on the node/link pre-
diction task rather than object detection, we assume access to ground truth boxes; however,
future work could explore node/link prediction performance when using boxes generated
from the region proposal network of the object detection network. We train the Faster R-
CNN model from torchvision using the following hyper-parameters: backbone=ResNet-50,
optimizer=stochastic gradient descent, learning rate=0.02, learning rate decays by a fac-
tor of 10 at epochs 16 and 22, momentum=0.9, aspect ratio group factor=3, batch size=2,
data augmentation=horizontal flips, epochs=26, weight decay=0.0001, across 8 GPUs. Af-
ter training, this model achieves an average precision value (at Intersection over Union (IoU)
of 0.5) of 50.7% when evaluated on the COCO mini-val set. In all experiments, we use
pre-annotated scene graphs from the Visual Genome dataset to form our dataset triples.

S3 Dataset Details
To partition attribute and predicate categories into head and tail classes, we do the following.
For attributes, we first compute the number of samples for each class represented in the
training dataset. We then compute the mean across counts of all classes, which is equal
to 10,973 samples. We then define head attribute classes as those classes containing more
than 10,000 samples in the training set and tail attribute classes as those containing fewer
than 10,000 samples. Similarly, for predicates, we first compute the number of samples for
each class in the training dataset, with the exception of the “has attribute” predicate. The
mean across predicate counts is equal to 15,525 samples. Head predicate classes are then
defined as those classes containing more than 15,000 samples and tail predicate classes are
defined as those classes containing fewer than 15,000 samples. This yields 66 head attribute
classes, 187 tail attribute classes, 9 head predicate classes (which includes “has attribute”),



HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S5

(a) Train Attributes (b) Train Predicates

(c) Test Attributes (d) Test Predicates

Figure S1: Histograms of attribute and predicate train and test distributions.

and 37 tail predicate classes. Histograms of the counts of all training samples for attribute
and predicate classes sorted from smallest to largest are in Fig. S1, along with the associated
test histograms. Note that both the train and test distributions are long-tailed. We provide
lists of the exact head and tail classes for attributes and predicates below, which are sorted
from most to least frequently represented in the training dataset.

Attribute Head Classes:

[white, black, tree, man, green, blue, brown, shirt,
wall, building, window, sky, red, ground, head,
grass, person, large, woman, hair, table, leg,
yellow, cloud, sign, gray, car, wooden, pant, grey,
fence, hand, water, chair, shadow, small, floor,
tall, door, jacket, leaf, road, line, plate, long,
field, sidewalk, arm, dark, standing, background,
people, boy, clear, face, street, snow, metal, ear,
bush, short, girl, pole, orange, light, bag]

Attribute Tail Classes:

[here, tan, track, shoe, jean, glass, bus, picture,
tile, sitting, plant, train, wheel, pillow, branch,
bench, giraffe, rock, silver, tire, umbrella, roof,
tail, pink, wood, dirt, stripe, horse, elephant,
short, flower, big, food, boat, dog, parked, zebra,
coat, hat, bowl, box, hill, mountain, reflection,
neck, brick, wave, cloudy, cabinet, walking, young,
round, striped, bike, house, trunk, open, counter,
helmet, top, cat, handle, mirror, foot, glass,
board, bed, motorcycle, back, clock, ceiling, cow,



S6 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

bottle, animal, truck, curtain, beach, frame, sand,
banana, shelf, paper, seat, bear, bird, cup, photo,
lady, purple, pizza, ocean, smiling, bare, sheep,
lamp, plastic, windshield, blonde, part, empty, wire,
skateboard, nose, old, child, wing, letter, book,
player, container, looking, wet, railing, kite,
design, plane, stand, basket, sink, edge, wood,
ski, surfboard, bright, towel, brick, cap, logo,
beige, post, writing, finger, vehicle, playing,
concrete, stone, hanging, glove, orange, dirty, calm,
boot, engine, tie, pot, spot, apple, light, little,
colorful, flag, glasses, mouth, grassy, square, dry,
thick, painted, paw, gold, closed, shiny, word,
sock, thin, stone, one, light brown, part, leather,
distant, flying, eye, on, ball, headlight,
rectangular, sticker, number, horn, hole, sunglass,
sliced, button, knob, key, tennis]

Predicate Head Classes:

[has attibute, on, has, in, wearing, of, behind, with,
near]

Predicate Tail Classes:

[next to, on top of, holding, by, under,
in front of, wears, above, sitting on, standing on,
beside, riding, on side of, standing in, over, at,
walking on, attached to, around, hanging on, covering,
below, sitting in, eating, carrying, laying on,
against, have, parked on, for, along, looking at,
belonging to, inside, and, made of, covered in]

S4 Additional Results
Here, we include a table with baseline model performances as well as raw Ω scores for our
main experiments from Sec. 5. We then include learning curves of our main results using the
mAP and AUROC metrics. We then provide tables containing the raw Ω scores for several
additional studies involving standard mini-batches, the performance of active learning meth-
ods using re-balanced mini-batches without bias correction, and the performance of active
learning methods when selecting samples from only tail attribute classes and tail predicate
classes. Additionally, we include histogram distributions of the number of samples selected
from each attribute class and predicate class by each active learning method.

S4.1 Main Results Tables
Table S1 contains raw accuracies for the Pre-Train and Offline baseline models across ques-
tion types and test sets. The Offline accuracy values are used for normalization with Ω.



HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S7

Table S1: Accuracy of the Pre-Train and Offline baselines on each question type evaluated
on the full and tail test sets. Each result is the average over 10 runs and used to compute the
Ω metric.

AUROC MAP

BASELINE (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?) (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?)

Full Test Set
Pre-Train 0.716 0.769 0.691 0.710 0.663 0.483 0.071 0.460 0.111 0.400
Offline 0.878 0.951 0.794 0.913 0.776 0.675 0.175 0.566 0.288 0.510

Tail Test Set
Pre-Train 0.515 0.368 0.565 0.402 0.558 0.279 0.003 0.327 0.016 0.311
Offline 0.895 0.960 0.759 0.906 0.783 0.708 0.312 0.515 0.263 0.532

Table S2: Ω performance of each active learning method over all 10 increments on each
question type evaluated on the full and tail test sets. We report performance using both the
AUROC and mAP metrics to compute Ω. Each result is the average over 10 runs. QBCat-Tail
is our main method that selects classes with uniform random probabilities, while QBCat-Tail
(Freq.) selects classes with probabilities defined by the class frequencies. Each method was
run using re-balanced mini-batches and bias correction.

AUROC MAP

MODEL (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?) (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?)

Full Test Set
Random 0.917 0.890 0.965 0.915 0.958 0.894 0.958 0.969 0.961 0.959
Confidence 0.918 0.889 0.961 0.917 0.955 0.894 0.959 0.967 0.965 0.957
Entropy 0.917 0.888 0.964 0.915 0.956 0.893 0.957 0.969 0.960 0.957
Margin 0.918 0.890 0.964 0.917 0.956 0.894 0.958 0.969 0.958 0.957
QBCat-Tail 0.941 0.927 0.978 0.951 0.974 0.919 0.959 0.985 0.958 0.979
QBCat-Tail (Freq.) 0.943 0.934 0.983 0.964 0.976 0.921 0.962 0.990 0.973 0.981

Tail Test Set
Random 0.792 0.581 0.929 0.723 0.915 0.740 0.693 0.931 0.766 0.904
Confidence 0.794 0.576 0.921 0.725 0.910 0.742 0.693 0.925 0.767 0.902
Entropy 0.791 0.574 0.927 0.724 0.911 0.740 0.693 0.928 0.766 0.902
Margin 0.795 0.582 0.927 0.724 0.911 0.743 0.693 0.929 0.766 0.901
QBCat-Tail 0.866 0.695 0.959 0.804 0.951 0.819 0.695 0.965 0.776 0.949
QBCat-Tail (Freq.) 0.872 0.716 0.966 0.836 0.955 0.828 0.696 0.971 0.783 0.954

Table S2 contains the raw Ω scores for each active learning method across question
types and test sets for our main experiments from Sec. 5. Note that these are the raw Ω

scores that are averaged across question types to generate Fig. 4. QBCat-Tail represents the
main version of our Tail method that selects classes uniformly at random, while QBCat-Tail
(Freq.) represents the additional study of the QBCat-Tail method from Sec. 5.1 that selects
classes with probabilities defined by the class frequencies. While the QBCat-Tail (Freq.)
method performs the best consistently across metrics, question types, and test sets, QBCat-
Tail performs comparably to QBCat-Tail (Freq.) without needing access to class frequencies.
QBCat-Tail outperforms or performs comparably to baseline active learning methods when
evaluated on the full test set and outperforms baseline methods by a significant margin when
evaluated on the tail test set. However, on average, QBCat-Tail outperforms all baseline
methods, as shown in Fig. 4.



S8 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

(a) (?, p,a) (b) (s, p,a?) (c) (?, p,o) (d) (s,?,o) (e) (s, p,o?)

(f) (?, p,a) (g) (s, p,a?) (h) (?, p,o) (i) (s,?,o) (j) (s, p,o?)

Figure S2: mAP learning curves showing incremental learning performance on the full test
set (top) and tail test set (bottom) over 10 increments for each question type. We also
include the performance of pre-train (lower bound) and full offline (upper bound) models.
Each curve is the average over 10 runs and the standard error over runs is denoted by the
shaded region. For plot clarity, the offline upper bound has been removed from the tail plots
for (s, p,a?) and (s,?,o), where the offline baseline achieved an average mAP of 0.312 and
0.263, respectively.

S4.2 Additional Plots for Main Results

In Fig. 5, we showed a subset of learning curves using the mAP metric. In Fig. S2, we show
all learning curves using the mAP metric. In Fig. S3, we show the same learning curves
using the AUROC metric. In mAP, our tail method outperforms or performs comparably
to baselines on the full test set and outperforms all baselines by a large margin on the tail
test set. In AUROC, our tail method outperforms all baselines by a large margin on all
question types when evaluated on both the full test set and tail test set. Overall, baseline
active learning methods perform similarly to the random sampling baseline on all question
types on both test sets using both metrics.

Since we perform active sampling at each increment, we also show histograms of the
sum of samples selected from different predicate classes and attribute classes by each active
learning method after all 10 increments in Fig. S4. Note that we include the main variant of
our Tail method that selects classes uniformly (QBCat-Tail), as well as the variant that selects
classes based on their frequency (QBCat-Tail (Freq.)). Unsurprisingly, the baseline active
sampling methods choose many samples from the head classes, which is likely the reason
for their poor generalization to tail classes. Conversely, our tail-based sampling approach
only selects samples from the tail of the distribution, allowing it to perform well on a wider
variety of classes.

S4.3 Additional Studies Plots

In Fig. S5, we provide overview plots of our additional studies. In these plots, we compare
performance of our main setup to using standard mini-batches and using re-balanced mini-
batches without bias correction. Specifically, we plot the average Ω AUROC and average



HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S9

(a) (?, p,a) (b) (s, p,a?) (c) (?, p,o) (d) (s,?,o) (e) (s, p,o?)

(f) (?, p,a) (g) (s, p,a?) (h) (?, p,o) (i) (s,?,o) (j) (s, p,o?)

Figure S3: AUROC learning curves showing incremental learning performance on the full
test set (top) and tail test set (bottom) over 10 increments for each question type. We also
include the performance of pre-train (lower bound) and full offline (upper bound) models.
Each curve is the average over 10 runs and the standard error over runs is denoted by the
shaded region.

Ω mAP scores of each active learning method over all five question types. In the following
subsections, we provide the raw Ω scores for each experiment.

On the full test set, we find that performing bias correction is critical to performance
across models; however, our QBCat-Tail method is most affected by the absence of bias
correction. This is expected as QBCat-Tail prioritizes data from tail classes and its weights
must be readjusted for the natural long-tailed distribution via bias correction. On the tail test
set, bias correction does not yield any benefit in terms of average Ω mAP, but yields benefit in
average Ω AUROC. When evaluating on both the full and tail test sets, using standard mini-
batches yields slightly worse performance than using re-balanced batches across methods. It
is interesting to note that our QBCat-Tail method outperforms all other methods on both test
sets when using standard mini-batches. However, all methods exhibit improved performance
when trained using re-balanced mini-batches, motivating their need in long-tailed settings.

S4.4 Additional Studies with Standard Mini-Batches
In Sec. 2.2, we claimed that naive training using standard mini-batch construction (i.e., uni-
formly random sampled batches) caused models to overfit to head classes and impaired learn-
ing in later training increments. To support this claim, we compare the mAP performance
of the random active sampling baseline using re-balanced mini-batches to using standard
mini-batches in Fig. S6. Overall, we see that performance using standard mini-batches is
consistently lower than using re-balanced batches, especially when evaluated on the tail test
set for (s, p,a?) and (s,?,o) questions. This motivates the need for re-balanced mini-batches
when training on long-tailed data distributions.

Further, we show the Ω performance in AUROC and mAP of each active learning method
when using standard mini-batches in Fig. S5 and Table S3. When using standard mini-
batches, our QBCat-Tail method still performs comparably to or outperforms baseline active
learning methods across question types and test sets. However, performance of all meth-



S10 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

Table S3: Ω performance of each active learning method using standard mini-batches over
all increments when evaluated on the full and tail test sets. We report performance on each
question type using both the AUROC and mAP metrics to compute Ω. Each result is the
average over 10 runs and computed based on 10 increments.

AUROC MAP

MODEL (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?) (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?)

Full Test Set
Random 0.875 0.834 0.944 0.822 0.936 0.850 0.950 0.949 0.913 0.936
Confidence 0.876 0.835 0.945 0.823 0.936 0.851 0.950 0.948 0.911 0.937
Entropy 0.876 0.834 0.946 0.821 0.934 0.851 0.950 0.950 0.913 0.935
Margin 0.876 0.835 0.948 0.822 0.936 0.851 0.950 0.952 0.911 0.936
QBCat-Tail 0.897 0.834 0.961 0.819 0.955 0.870 0.952 0.968 0.919 0.955

Tail Test Set
Random 0.663 0.415 0.878 0.534 0.863 0.607 0.691 0.877 0.754 0.851
Confidence 0.668 0.415 0.881 0.535 0.863 0.611 0.691 0.878 0.754 0.853
Entropy 0.666 0.415 0.882 0.531 0.860 0.610 0.691 0.879 0.754 0.850
Margin 0.665 0.415 0.887 0.533 0.863 0.610 0.691 0.886 0.754 0.851
QBCat-Tail 0.730 0.415 0.917 0.537 0.906 0.669 0.691 0.921 0.756 0.894

Table S4: Ω performance of each active learning method with re-balanced mini-batches
without bias correction over all increments when evaluated on the full and tail test sets.
We report performance on each question type using both the AUROC and mAP metrics to
compute Ω. Each result is the average over 10 runs and computed based on 10 increments.

AUROC MAP

MODEL (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?) (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?)

Full Test Set
Random 0.866 0.819 0.937 0.819 0.925 0.830 0.897 0.931 0.872 0.926
Confidence 0.867 0.819 0.936 0.822 0.926 0.831 0.898 0.929 0.877 0.926
Entropy 0.867 0.819 0.938 0.821 0.923 0.831 0.898 0.932 0.869 0.923
Margin 0.866 0.819 0.939 0.822 0.927 0.830 0.898 0.933 0.878 0.927
QBCat-Tail 0.898 0.807 0.944 0.804 0.934 0.864 0.871 0.941 0.780 0.941

Tail Test Set
Random 0.714 0.419 0.896 0.542 0.860 0.652 0.691 0.898 0.755 0.858
Confidence 0.717 0.419 0.892 0.547 0.862 0.655 0.691 0.894 0.755 0.860
Entropy 0.717 0.419 0.897 0.546 0.860 0.657 0.691 0.897 0.755 0.857
Margin 0.718 0.418 0.899 0.545 0.864 0.656 0.691 0.898 0.755 0.861
QBCat-Tail 0.824 0.443 0.936 0.695 0.908 0.770 0.692 0.948 0.796 0.916

ods is improved by using re-balanced mini-batches, which further motivates their use when
operating on imbalanced datasets.

S4.5 Additional Studies Without Bias Correction
While Table S2 contains the results of each active learning method with re-balanced mini-
batches after bias correction, we also show the performance of each method without bias
correction in Table S4. Recall that the purpose of the bias correction phase is to adjust
the network outputs to the natural data distribution. On the full test set, our QBCat-Tail
method performs worse than baseline active learning methods for the (s, p,a?) and (s,?,o)
question types. This is not surprising as our method prioritizes selecting tail data and without
bias correction, it is not well-calibrated for the natural data distribution. When evaluated
on the tail test set, QBCat-Tail outperforms all baselines. However, QBCat-Tail performs
comparably to or outperforms other methods on both the full and tail test sets across question



HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S11

Table S5: Ω performance of each active learning method when methods only select data
from tail classes over all increments when evaluated on the full and tail test sets. We report
performance on each question type using both the AUROC and mAP metrics to compute Ω.
Each result is the average over 10 runs and computed based on 10 increments.

AUROC MAP

MODEL (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?) (?, p,a) (s, p,a?) (?, p,o) (s,?,o) (s, p,o?)

Full Test Set
Random 0.943 0.934 0.983 0.964 0.976 0.921 0.962 0.990 0.973 0.981
Confidence 0.944 0.933 0.981 0.963 0.974 0.922 0.962 0.986 0.972 0.979
Entropy 0.945 0.934 0.981 0.964 0.974 0.922 0.963 0.987 0.976 0.979
Margin 0.922 0.931 0.972 0.961 0.964 0.897 0.963 0.976 0.971 0.964
QBCat-Tail 0.941 0.927 0.978 0.951 0.974 0.919 0.959 0.985 0.958 0.979

Tail Test Set
Random 0.872 0.716 0.966 0.836 0.955 0.828 0.696 0.971 0.783 0.954
Confidence 0.876 0.712 0.963 0.834 0.951 0.830 0.696 0.966 0.782 0.949
Entropy 0.877 0.717 0.964 0.836 0.951 0.830 0.696 0.968 0.783 0.949
Margin 0.803 0.708 0.944 0.829 0.927 0.747 0.696 0.944 0.781 0.915
QBCat-Tail 0.866 0.695 0.959 0.804 0.951 0.819 0.695 0.965 0.776 0.949

types after bias correction is applied in Table S2 and Fig. S5.

S4.6 Active Learning Methods when Selecting Data from Only Tail
Classes

Since our QBCat-Tail active sampling method prioritizes data from tail classes during sam-
pling, we were interested to see how other active learning methods performed when selecting
data from only tail classes. In this experiment, we compared the Random, Confidence, En-
tropy, and Margin active sampling methods when selecting data from a pool consisting of
unlabeled instances from only tail classes (i.e., we removed samples from head classes).
Note that random sampling from tail data is equivalent to the QBCat-Tail (Freq.) method
from Table S2. Results for each method using Ω when evaluated on the full and tail test sets
are in Table S5.

We find that all active sampling methods exhibit performance improvements when se-
lecting samples from only tail data. This further supports the findings of our QBCat-Tail
method. While performance is similar for several methods, QBCat-Tail does not require
computing uncertainty scores for particular instances, making it simpler and more desirable
to use in practice.

It is worth noting that all methods exhibit improved performance on all question types on
both test sets when selecting data from only tail classes (compared to selecting data from all
classes in Table S2), further indicating the benefit of considering the class distribution during
active learning on long-tailed datasets. While all methods exhibit improved performance
when selecting data from tail classes, our QBCat-Tail approach is simplest since it does not
require computing uncertainty scores at the instance level. This motivates the need for more
methods that compute uncertainty scores at the class level instead of the instance level.



S12 HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE?

Figure S4: Sum of counts of each predicate class and attribute class selected during active
learning by each method after 10 increments. Each plot is averaged over 10 runs. QBCat-
Tail (Ours) is our main method that selects classes with uniform random probabilities, while
QBCat-Tail (Freq.) selects classes with probabilities defined by the class frequencies.



HAYES, NICKEL, KANAN, DENOYER, SZLAM: CAN I SEE AN EXAMPLE? S13

Figure S5: Average Ω performance of active learners under various setups on the full and
tail test sets. Main Setup uses re-balanced mini-batches and bias correction. Each result is
averaged over five question types.

(a) (?, p,a) (b) (s, p,a?) (c) (?, p,o) (d) (s,?,o) (e) (s, p,o?)

(f) (?, p,a) (g) (s, p,a?) (h) (?, p,o) (i) (s,?,o) (j) (s, p,o?)

Figure S6: Learning curves comparing incremental learning performance of the random ac-
tive sampling method using re-balanced mini-batches and standard mini-batches on the full
test set (top) and tail test set (bottom) over 10 increments for each question type. We also
include the performance of pre-train (lower bound) and full offline (upper bound) models.
Each curve is the average over 10 runs and the standard error over runs is denoted by the
shaded region. For plot clarity, the offline upper bound has been removed from the tail plots
for (s, p,a?) and (s,?,o), where the offline baseline achieved an average mAP of 0.312 and
0.263, respectively.


