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Abstract

We propose a bootstrapping framework to enhance human optical flow and pose. We
show that, for videos involving humans in scenes, we can improve both the optical flow
and the pose estimation quality of humans by considering the two tasks at the same time.
We enhance optical flow estimates by fine-tuning them to fit the human pose estimates
and vice versa. In more detail, we optimize the pose and optical flow networks to, at
inference time, agree with each other. We show that this results in state-of-the-art results
on the Human 3.6M and 3D Poses in the Wild datasets, as well as a human-related
subset of the Sintel dataset, both in terms of pose estimation accuracy and the optical
flow accuracy at human joint locations. Code available at https://github.com/
ubc-vision/bootstrapping-human-optical-flow-and-pose

1 Introduction
Estimating the pose and the motion of humans plays an important role in various tasks in
Computer Vision, including human activity recognition [38], pedestrian analysis [9], and
pose-based medical diagnosis [33]. Naturally, various methods have been proposed to esti-
mate human pose accurately [17, 19] as well to analyze motion (optical flow) in scenes [35].
While these methods have been highly successful in the task of human pose estimation and
optical flow estimation, respectively, they focus either on solely on the human pose [17, 19],
or focus on generic optical flow [35].

This leaves room for improvement. Regarding estimating motions, while unsurprising,
indirect evidence of potential for improvement arises from work focusing on human optical
flow [31, 32]. Generic optical flow methods, such as Spynet [30], perform better for esti-
mating optical flow of humans when fine-tuned on human-centric scenes. This demonstrates
that when the task revolves around humans, the optical flow method should also focus on
humans. On the other hand, regarding human pose, an important but overlooked assumption
in recent works is temporal consistency. While [10] utilized multiple frames to take advan-
tage of temporal consistency, this is, in fact, left for the Neural Network to implicitly figure
out and embed into the framework while training. However, modern generic optical flow
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(a) Pose from [19] (b) Flow from [35] (c) Flow enhanced pose (d) Pose enhanced flow

Figure 1: Teaser – Given an input image, we use off-the-shelf methods [19], [35] to esti-
mate the pose and the flow of the scene, which we then improve them without any retraining.

methods perform surprisingly well [35], so learning this temporal relationship implicitly is a
difficulty one does not have to go through—we already have the tools.

In our work, we propose to make use of the tools that already exist—human pose estima-
tors and optical flow networks—and enhance their performance by marrying the two. Our
idea originates from the fact that, should human optical flow and pose be estimated properly,
they should coincide—the movement of the joints, when projected in 2D, should follow the
optical flow estimates at these locations. We thus create an iterative flow-pose-flow optimiza-
tion framework for inference, where, assuming both estimators are not completely failing we
enhance the optical flow to match the pose estimates, which we then optimize the pose to
match the flow, and finally optimize the flow once more to match the pose; See Figure 1 for
an example. While this process can be repeated multiple times for further enhancement, with
the state-of-the-art methods that are already performing well, we find that this three-round
setup is enough for accurate estimates.

In more detail, for the optical flow network we utilize the Recurrent All Pairs Field Trans-
form (RAFT) [35], and for the human pose estimator the Mesh Transformer (METRO) [19].
We then, given a video sequence of a human, fine-tune the RAFT network so that the flow
estimates match the METRO pose estimates at the pixels that correspond to the projected
2D locations of the human skeleton, which would then roughly represent how the human
moved between two frames. In other words, we create the 2D stick-man representation of
the human considering all the bone pixels, and then ensure that the optical flow values at the
bone pixels are close to the difference in bone pixel locations in consecutive frames. With
enhanced flow, we obtain enhanced poses by optimizing the 3D poses directly to match the
flow, while considering also the temporal smoothness of the estimates, similar to [1] and con-
sistent bone length. Finally, we fine-tune the RAFT network once more with the enhanced
poses. While we initially utilize RAFT and METRO, these can be trivially replaced with any
other human pose estimator and optical flow network as we show in our experiments. We
note that, during this entire process, no re-training is required and we are strictly fine-tuning
to the test data without any label. In other words, we are solving our problem in a setup
similar to transductive learning.

We validate the efficacy of our method on three datasets: Human 3.6M [12] and 3D Poses
in the Wild (3DPW) [41] datasets, both of which are human pose datasets, and a subset of
the Sintel dataset with scenes containing humans. On all three datasets, we show that our
method improves METRO and RAFT significantly, achieving state-of-the-art results in terms
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of both human pose estimation and human optical flow estimation.
To summarize, the main contributions of our work are as follows:

• to the best of our knowledge, our work is the first to propose a multi-task-based inference-
time optimization framework that enhances both human pose and optical flow estimation;

• we achieve the state-of-the-art human pose estimation performance on the Human 3.6M
and the 3DPW datasets;

• we achieve state-of-the-art human optical flow performance for the Human 3.6M, the
3DPW, and the Sintel (human subset) datasets.

2 Related works

Monocular 3D human pose estimation. Work on monocular 3D human pose estimation can
be primarily divided into two categories. The first class of methods detect 2D keypoints—for
example, such as ones provided by Deep Dual Consecutive Network (DCPose) [20]—and
then lift them to their 3D counterparts [22, 25, 43]. While they differ in detail, these lifting
processes are typically performed through a Neural Network that is trained from data.

Although lifting-based pose estimators provide highly accurate pose estimates on stan-
dard benchmark datasets such as Human3.6M [12], in the case of datasets that are closer
to ‘in-the-wild’ setups [41] they do not perform as well. Moreover, their performance is
highly dependent on the quality of the initial detection of 2D keypoints, as if 2D keypoints
are wrong, there is often no way of recovery.

Another class of methods utilize a parametric body model, typically the skinned multi-
person linear model (SMPL) [21] and their variants [26, 28]. Parametric body model-based
methods utilize this model in various ways. Bogo et al. [2] iteratively optimizes the body
model parameters to fit the 2D observations. Kanazawa et al. [15] regresses the model pa-
rameters with a Neural Network, given the input image. VIBE [17] has recently shown that
robust video-based pose estimation is possible by incorporating a motion prior learned in an
adversarial setup. These methods, however, fail in cases of heavy occlusion, fast motion, and
multi-person occlusion, as we will show in our experiments.

Recently for occlusion, Lin et al. [19] introduced a transformer-based pose estimation
approach (METRO) that performs well on the Human3.6M and 3DPW datasets. The main
benefit of this method is that, by utilizing transformers, the method learns the relationship
among the vertices on the human mesh model, thus the method is able to figure out where the
human body parts are, even in the presence of occlusions. Chen et al. [4] takes motivation
from the anatomy of the human skeleton and break down the task into the bone direction and
bone length predictions after which the 3D joint positions are estimated. Lastly, [5, 29, 44]
explore optical flow to improve human pose, but not the other way around.

Tangent to the aforementioned research direction of having a better pose estimator, Arnab
et al. [1] focuses on improving what is already available. They take advantage of the fact that,
within neighbouring video frames, multi-view information exists in the presence of camera
motions, and enhance pose estimation results via optimizing them according to predefined
criteria—matching 2D and 3D pose estimates, enforcing temporal consistency, and utilizing
human pose priors. As our method is also aiming to enhance pose and flow estimates via
inference time optimization, these criteria can easily be included, which we do, except for
human pose priors since it is often highly data dependent.

Optical flow methods. Recent methods use Deep Networks trained on large datasets for
estimating optical flow. Flownet [7], Flownet 2.0 [11], and Spatial Pyramid Network [30]
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Figure 2: Framework – We use off-the-shelf human pose and optical flow estimators and
further fine-tune their estimates to coincide with each other for improved performance.

use two consecutive frames to estimate optical flow directly in an end-to-end manner, with
varying architectural designs to make the algorithm more robust and efficient [11] or consider
optical flow at various scale levels [30]. On the other hand, Voxel2Voxel [36] utilizes 3D
convolutions to take both space and time into account through convolutions, so that more
frames than just to two consecutive ones can be taken into account.

In addition to relying on the convolution structure directly, PWC-Net [34] utilizes a local
cost volume approach, where all pixels in the potentially matching regions are compared
with one another, hence explicitly forming relationships that are then utilized to create the
optical flow map. This type of approach, where one allows the Deep Network to explicitly
build relationship, has been highly effective in predicting optical flow [14, 37]. For example,
state-of-the-art methods like Recurrent All-Pairs Field Transforms (RAFT) [35] and [13],
propose to also utilize cost volumes, together with a recurrent setup that corrects optical flow
estimate within the network. Recently, Correspondence Transformers (COTR) [14] further
incorporates the cost volume and the recurrent strategy using Transformers [40].

In case of the performance of these methods on estimating human optical flow, however,
is somewhat questionable [31, 32]. Optical flow methods are trained with scenes without
particular focus on humans. These include real-world driving datasets such as KITTI [8],
and synthetic datasets such as FlyingChairs [7], FlyingThings [23], and Sintel [3]. Because
of this, many of them perform poorly when applied to human centred tasks [31, 32]. Thus,
there is room for improvement here, which in our work, we bring by utilizing human pose
estimators—human optical flow, should human pose estimators be perfect, can be obtained
by simply rendering the poses in the two frames from which we wish to extract optical flow.

3 Method
The overall framework is shown in Figure 2. We utilize off-the-shelf pose and flow estima-
tion modules, namely METRO [19] for the 3D human pose estimates, DCPose [20] for the
location of 2D joints, and RAFT [35] for flow estimation. With these pre-trained modules,
we first obtain the human pose estimates within the scene, with which we create a rough hu-
man skeleton-based sketch of the human optical flow. We then provide this sketch to RAFT,
and fine-tune RAFT parameters for each scene so that the estimated flow follows this rough
sketch flow. This already results in an improved optical flow estimate compared to simply
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(a) Flow from [35] (b) Pose-based sketch (c) Target flow (d) Fine-tuned flow

Figure 3: Example improving human optical flow – With flow from off-the-shelf
RAFT [35] we augment it with the pose estimate-based human optical flow to obtain a target
optical flow which we fine-tune RAFT with for improved performance (highlighted circle).

using RAFT off-the-shelf. We use this optimized flow estimate and additional human pose
related priors to then refine the pose estimates, again by fine-tuning the pose estimates di-
rectly on this scene. Finally, this process is repeated with the enhanced estimates. We detail
each part of the pipeline in the following subsections.

3.1 Improving human optical flow with pose
To improve human optical flow estimates, we rely on human pose estimation. As shown in
Figure 3 (a), as RAFT [35] is a generic optical flow estimator, the estimated flow may be
inaccurate, especially when a human in the scene is moving abruptly. The human pose es-
timator, for example METRO [19], however, may still provide reasonable (albeit imperfect)
pose estimates as shown in the skeleton sketch in Figure 3 (b). Hence, allowing the pose
estimates to help the optical flow estimation process is a natural choice.

Specifically, for each frame, we apply the 3D human pose estimator, for example, METRO,
to get the 3D joint locations. Next, we project the 3D joints onto the 2D image and create
a stick-man figure as shown in Figure 3 (b), using the joint pairs as in [20] with the excep-
tion of the (head, neck) bone being replaced with the (head, nose) and (nose, neck) bones
to roughly model also the facial motion. In addition, we make the skeleton thick so that it
covers more than just a simple thin line by convolving a cross shape with a fifteen-pixel ra-
dius. When 3D joint estimates are unreliable, we directly use 2D joint estimates instead, for
example from DCPose. We then compute the optical flow on the stick-man pixels trivially by
taking the difference between stick-man pixel positions in consecutive frames. This creates
a very rough optical flow map of the ‘bones’ of the human body. Next, the rough optical
flow map of the bones is overlaid on top of the estimated flow map (e.g., by RAFT as shown
in Figure 3 (a)). This then leads to a ‘target’ flow map as shown in Figure 3 (c).

Finally, to leverage the implicit bias of optical flow estimates already stored in RAFT,
and at the same time enhance the estimates, we fine-tune the RAFT network to generate this
‘target’ flow map. As fine-tuning for too long would lead to the RAFT network generating
an output identical to the ‘target’ flow map, we fine-tune only for a very few iterations, which
leads to an improved optical flow map as shown in Figure 3 (d). This somewhat resembles
how Deep Image Prior [39] achieves image enhancement via early stopping an overfitting
process. Here, similar to the Deep Image Prior, we are taking advantage of existing networks,
and the learned prior about the task within them. Note that this early stopping also prevents
our flow estimates from diverging too much due to potentially faulty estimates.
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Mathematically, denoting the flow map prior to the optimization run as F t where t is the
frame index, the target flow generated as F̂ t

, smooth ℓ1 norm as ρ , and the parameters of the
RAFT network as ΦRAFT we minimize

Lflow (ΦRAFT) = Et

[
ρ

(
F t −F̂ t

)]
. (1)

3.2 Improving human pose with optical flow
With improved optical flow, we further improve our human pose estimates. Specifically, we
enforce that the movement of the 3D joints, when projected onto the 2D image, follows the
optical flow estimates. In addition to optical flow, we further enforce temporal consistency,
as in [1], of the joint and camera estimates, including the human bone length inspired by
[42], and also enforce that the results of the 2D joint estimator (DCPose) match that of the
3D method. Thus, if we denote the 3D joint locations as X and the corresponding camera
estimates as C, we minimize

Lpose (X,C) = Lopt (X,C)+L3D (X)+L2D (X,C)+Ltemp (X,C) . (2)

Optical flow consistency—Lopt (X,C). We make sure that the 2D projections of the 3D
joints obey the optical flow at the joint locations as the two should be estimating the same
phenomenon, just in two different ways. We thus penalize any difference between the two.
Denoting the projection operation as P , the optical flow at a pixel location x as Fx, and the
j-th 3D joint location for the t-th frame as Xt

j we write

Lopt (X,C) = λoptEt, j

[
ρ

(
F t−1

P
(

Xt−1
j

)−(P (Xt
j,C

t)−P
(

Xt−1
j ,Ct−1

)))]
. (3)

3D joint consistency—L3D (X). To prevent our optimized poses from deviating too much
from the original estimate from the off-the-shelf method, we penalize when the deviation is
too large. Denoting the initial estimate for Xt

j as X̃t
j we write

L3D (X) = λ3DEt, j
[
ρ
(
Xt

j − X̃t
j
)]
. (4)

2D joint consistency—L2D (X,C). 2D joint estimates from DCPose are typically very ac-
curate, and often more reliable than the 3D pose estimates, which is unsurprising given that
estimating 3D pose introduces an additional dimension to the problem. Hence, we penalize
when the 3D estimates deviates from them. Denoting the detection result from DCPose (or
any other 2D human joint detector) as x, and the projection by P , we write

L2D (X,C) = λ2DEt, j
[
wt

jρ
(
xt

j −P
(
Xt

j,C
t))] , (5)

where w denotes the confidence score for a joint estimate coming from the joint detector.

Temporal consistency—Ltemp (X,C). As in [1], we leverage the fact that temporal consis-
tency can be assumed, as change is small between frames. Unlike [1], we further enforce the
bone length constraint when considering this temporal consistency term. We thus write

Ltemp (X,C) = λposEt, j

[
ρ

(
Xt

j −Xt−1
j

)]
+λcamEt, j

[
ρ
(
Ct −Ct−1)]

+λboneEt, j,k

[
ρ

(∥∥Xt
j −Xt

k

∥∥
2 −
∥∥∥Xt−1

j −Xt−1
k

∥∥∥
2

)], (6)
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where ∥ · ∥2 denotes the ℓ2 norm.

3.3 Implementation details

Optimization settings. To optimize the flow network, we use the Adam optimizer [16] with
a learning rate of 10−5 and default parameters. For the flow network (RAFT), we optimize
its parameters for the entire video, per Eq. (1). This effectively results in an improved RAFT
model for each scene. In more detail, we iterate over each frame one-by-one (equivalent to
batch size of one) and optimize the per-scene RAFT network for eight epochs, a value that
we empirically found that works well in general.

For optimizing the 3D joint estimates, we, again, use the Adam optimizer [16] with a
learning rate of 0.001. We empirically set the number of optimization iterations to 1,500
epochs. We perform this flow and pose optimization cycle once for pose and twice for flow.
See Supplementary Material for experiments regarding this choice.

Finally, for our experiments with METRO, we set λopt = 0.01, λ3D = 400, λ2D = 0.01,
λpos = 300, λcam = 0.1, and λbone = 104, which we found empirically by testing a few videos
that this setup works well in general.

When 3D joint estimates are unreliable. We found that METRO, our choice of the 3D joint
estimator, does not perform as well when applied to datasets that are not focusing on humans.
This leads into X being erroneous. In this case, we simply resort to the 2D joint detector
DCPose, which delivers more robust performance in more complicated scenarios. We thus
modify our losses, specifically directly replace the projected points P

(
Xt

j,Ct
)

with xt for all

losses. We also ignore loss components that directly use X and not P
(

Xt
j,Ct

)
and replace

the 3D joint consistency with a 2D version using initial 2D estimates. Specifically, this setup
is for the Sintel Human subset dataset, which we will discuss more in Section 4.1. With this
setup, we optimize for 50 epochs per cycle for the flow instead of the eight previously. The
setup for the joints remain the same, although we are now in 2D.

4 Results
For evaluation, we use the Human3.6M [12], 3DPW [41] and a subset of the Sintel (final) [3]
datasets. In this section, we show that our method outperforms the state of the art human
pose and optical flow results on all the three datasets, without introducing any retraining or
additional datasets.

4.1 Datasets and evaluation setup
Datasets. We evaluate both the performance of human pose estimation and human opti-
cal flow estimation on three datasets—two aimed at human pose estimation and another at
optical flow.
• Human3.6M [12]: This dataset is a large scale human pose dataset with 2D and 3D an-

notations captured in an indoor setting. There are a total of 2 subjects, S9 and S11, per-
forming different actions such as walking and sitting. We follow the exact same evaluation
setup as in METRO [19], based on their public implementation. As in [19] and [27], we
down-sample the videos from 50 fps to 10 fps.
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(a) METRO (b) Ours (c) METRO (d) Ours (e) DCPose (f) Ours (g) DCPose (h) Ours

Figure 4: Pose estimation examples – Example comparison of pose estimation results
on the (a–b) Human3.6m, (c–d) on the 3DPW, and (e–h) on the Sintel human subset dataset.
Note how our method improves pose estimates in case of occlusions (c–d) or when the person
is interacting with the object (e–h).

(a) Input (b) GT (c) RAFT [35] (d) Ours (e) Input (f) GT (g) RAFT [35] (h) Ours

Figure 5: Flow estimation examples – Example comparison of optical flow estimation
results on the Sintel human subset dataset. Ours successfully recovers the left leg in (d) and
the right leg in (h), which was wrongly estimated in the case of the original RAFT method.

• 3DPW [41]: This dataset is another large-scale dataset with 3D annotations of people in
the wild. We use the standard test set of the 3DPW dataset—a total of 35K frames.

• Sintel human subset: We create a subset of the Sintel (final) dataset [3]—a commonly
used optical flow dataset of synthetic scenes with atmospheric effects—by selecting scenes
with humans in them: ‘alley 2’, ‘bamboo 2’, ‘cave 2’, and ‘cave 4’. This results in a small
dataset consisting of 196 frames with which we evaluate the human optical flow.

Metrics. We evaluate both the joint positions and the human optical flow errors with standard
metrics. We use mean per joint position error (MPJPE) and the end point error (EPE). For
the Human3.6M dataset and the 3DPW dataset we report the EPE values only for the joint
locations where ground-truth correspondences are available—we do not know the ground-
truth flow for all other points. For the Sintel dataset we use all points. In addition, we follow
the standard method of computing MPJPE for the fourteen common joints.

4.2 Experimental results

Qualitative results. In Figure 4, we show qualitative results for how human pose estimation
improves with our method. Note how the pose estimation result of existing methods can lead
to partial inaccuracies, for example, due to (a–b) complex poses, (c–d) occlusions with other
entities in the scene and (e–h) object interactions. Our method provides accurate results even
in these cases. In Figure 5, we show results for improving flow estimates. As shown, optical
flow values on the human that were originally missing and wrongly estimated are corrected
with our method.

Quantitative results. In Table 1, we report the MPJPE and the EPE metrics for our method
as well as other baselines. Building upon METRO and RAFT, our method outperforms both
methods in their respective tasks. It is worth noting that, as shown earlier in Figure 4, the
gains are most prominent when extreme poses occur and occlusions exist. Still, they are
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Human3.6M 3DPW Sintel human

Model MPJPE↓ EPE↓ MPJPE ↓ EPE ↓ MPJPE ↓ EPE ↓
HMR [15] 88.00 - - - - -
Pose2Mesh [6] 64.90 - 89.20 - - -
I2LMeshNet [24] 64.90 - 93.20 - - -
VIBE [17] 65.60 - 82.00 - - -
PARE [18] - - 74.50 - - -
METRO [19] 54.04 - 77.10 - - -
METRO∗ 54.07 - 75.87 - - -

RAFT [35] - 2.729 - 1.751 - 2.513

Our method 53.15 2.402 74.45 1.661 - 2.383

Table 1: Quantitative results – Comparison with
other 3D pose and optical flow methods multiple
datasets. METRO∗ represents our adaptation of
[19] based on the official public implementation.
Our method allows improving upon the state of the
art, both in terms of human optical flow and pose.

Human3.6M

Model MPJPE↓ EPE↓
METRO 54.04 -
METRO∗ 54.07 -
Anatomy3D 47.90 -
Avg(Anatomy3D, METRO) 43.34 -

RAFT - 2.729
GMA - 2.740
Avg(GMA, RAFT) - 2.688

Our method – METRO / RAFT 53.15 2.402
Our method – METRO / GMA 53.14 2.316
Our method – Anatomy3D / RAFT 46.93 2.324
Our method – Anatomy3D / GMA 46.93 2.250
Our method – Avg(Anatomy3D, METRO)/Avg(GMA, RAFT) 42.56 2.230

Table 2: Refinement on top of
different 3D pose and optical flow
methods – A performance compari-
son on the Human3.6M dataset show-
ing that our method is applicable to
various methods.

frequent and large enough to be seen in the average metrics that we report in this table.
To further show that our optimization framework is not limited to METRO and RAFT,

we conduct additional experiments with other optical flow and human pose estimators:
GMA [13], Anatomy3D [4]. We also use them together with RAFT and METRO by av-
eraging their estimates, which we found to work well.

We note that Anatomy3D does not provide camera estimates, and is designed to utilize
the ground-truth camera parameters. As such, when Anatomy3D is used, we rely on ground-
truth cameras. In addition, Anatomy3D estimates are initially more accurate than those from
METRO, rendering the temporal consistency term useless. We thus do not use this term
when Anatomy3D estimates are used.

We report these results in the Table 2—our method enhances all methods, demonstrating
its efficacy.

Ablation study. We provide an ablation study on the losses and the number of optimization
cycles in the Supplementary Material.

5 Conclusions
We proposed an iterative framework for enhancing human pose and optical flow estimation
accuracy of existing methods without any training. Our method takes its roots from the fact
that, when performed properly, the two tasks should coincide. Hence, we optimize optical
flow to match the movement of the human joints and vice versa. This leads to a performance
boost, enough to push the boundaries of the state of the art further. The gain was especially
visible in cases where extreme poses, occlusions, and object-human interactions exist. We
have validated our method on two human pose datasets, Human3.6M and 3DPW, and a
subset of the Sintel optical flow dataset, achieving state of the art in all three datasets, both
in terms of human pose and optical flow estimation accuracy.

Limitations and future work. The performance of our framework, while it improves upon
the state of the art, is also somewhat bound by the quality of the initial estimates. Hence,
starting completely from a wrong pose would not lead to accurate pose estimates, even with
good optical flow. The opposite is also true. Thus, a promising research direction would be
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to include multiple methods into the framework, thus reducing the risk of total failure. A
naive version of this was shown in Table 2 via averaging, but a more sophisticated way of
combining methods, for example via a multiple-instance learning setup could be interesting.

Additionally, the inference time of our pipeline is a limitation as we are, in fact, opti-
mizing a network during inference time—it takes 20.50 seconds per frame on a GeForce
RTX 3090 GPU using METRO and RAFT. This is roughly 14.5 times slower than running
METRO and RAFT separately. Speeding up this inference time could be an interesting future
research direction.
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