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Problem:

- Generic optical flow methods (such
as RAFT) perform better on humans
when fine-tuned on human-centric
scenes. In addition, they fail in cases
of fast motion.

- Overlooked assumption in recent
pose estimations works (such as
METRO) is temporal consistency.
Some methods take them into
consideration but most leave it for
the Neural Network to implicitly
figure out and embed into the
framework while training.
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Overall framework:

Tterative Flow-Pose-Flow Optimization Framework
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Solution:

- Make use of the tools that already exist—human pose estimators and
optical flow networks—and enhance their performance by marrying the
two.

- Create an iterative flow-pose-flow optimization framework for inference.

- Idea originates from the fact that the movement of the joints, when
projected in 2D, should follow the optical flow estimates at these locations.
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Laow(Prarr) = Ec[p(F! - F1)]

- Generate rough optical flow map of the bones with help of pose estimator.

- This is overlaid on top of the estimated flow map (e.g., by RAFT).

- Target flow map (F*) produced.

- Minimize smooth ¢, norm (p) between predicted flow () and F¢. Update
parameters of the RAFT model (®grarr) to get fine-tuned optical flow.

Pose module:
Lpose(X, €) = Lopt(X, €) + L3p(X) + Lop(X, €) + Leemp(X, €)
We directly optimize the 3D joint estimates based on optical flow consistency

(Lopt(X, €)), 3D joint consistency (£3p (X)), 2D joint consistency (L;p (X, C))
and temporal consistency (Liemp(X, C)).
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Ablation Study: Method MPJPE |
Initial pose estimates (METRO) 54.07
Lsp 54.07
Lsp + Lop 5393
L3p + Lap + Liemp (Without bone consistency) 5345
Lap + L + Liemp 5329
L3p + Lop + Liemp + Lopt 53.15

- Effects of adding different loss terms to our pose refinement pipeline.

(a) MPJPE vs #cycles

(b) EPE vs #cycles (c) MPJPE vs #cycles /'w GT  (d) EPE vs #cycles /w GT

- Pose and flow errors with respect to the number of optimization cycles.



http://ubc-vision.github.io/derf
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