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Abstract

The deep learning (DL)-based methods of low-level tasks have many advantages over
the traditional camera in terms of hardware prospects, error accumulation and imaging
effects. Recently, the application of deep learning to replace the image signal process-
ing (ISP) pipeline has appeared one after another; however, there is still a long way
to go towards real landing. In this paper, we show the possibility of learning-based
method to achieve real-time high-performance processing in the ISP pipeline. We pro-
pose LW-ISP, a novel architecture designed to implicitly learn the image mapping from
RAW data to RGB image. Based on U-Net architecture, we propose the fine-grained
attention module and a plug-and-play upsampling block suitable for low-level tasks. In
particular, we design a heterogeneous distillation algorithm to distill the implicit features
and reconstruction information of the clean image, so as to guide the learning of the
student model. Our experiments demonstrate that LW-ISP has achieved a 0.38 dB im-
provement in PSNR compared to the previous best method, while the model parameters
and calculation have been reduced by 23× and 81×. The inference efficiency has been
accelerated by at least 15×. Without bells and whistles, LW-ISP has achieved quite
competitive results in ISP subtasks including image denoising and enhancement.

1 Introduction
In recent years, smartphones have increasingly dominated daily photos. With the emergence
of advanced applications such as autonomous driving [6, 51], high-speed continuous shoot-
ing [62] and 4K recording [7], the importance and requirements for cameras are increasing
gradually. The image signal processing (ISP) [23, 40, 44, 57] is used to receive and process
the raw signal of the sensor during the entire process of camera imaging, which has a decisive
effect on the quality of the image. As mobile devices begin to adapt to powerful hardware
with an ISP system [17], the resolution has been greatly increased. However, small sensors
and relatively compact lenses have led to the loss of detail and high noise levels, and the
current ISP system still fails to solve these problems completely. Moreover, as Deep Neural
Networks (DNNs) achieve performance that surpasses conventional algorithms in the tasks
of image classification [8, 52], speech recognition [20, 22] and other fields [4, 39, 49], the
combination of DNNs and ISP has been brought to the fore.
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HUAWEI P20 RAW - Visualized Canon 5D Mark IV

PyNET LW-ISP (Ours)

21.19 dB

3.8 seconds

21.57 dB

0.25 seconds

Figure 1: Example set of images from ISP
dataset (Zurich [30]). The number in the
red box represents the PSNR value, and the
blue box indicates the test time under a sin-
gle NVIDIA Tesla V100.

Traditional ISPs and DL-based solutions
still face various challenges. As the special
hardware in the camera dedicated to image
processing tasks, ISP can solve many low-
level and global image processing tasks in
proper order, such as demosaicing, white bal-
ance, exposure correction, and gamma cor-
rection. In the design of the traditional ISP
system, aforementioned tasks are well re-
searched independently, without considering
its subsequent impact, which may lead to the
accumulation of errors in the entire process-
ing pipeline. That means that the overall
process will be affected by error propagation
from stage to stage. For instance, early demo-
saicing artifacts may be amplified by image
sharpening or misalignment of different exposures [23]. At present, learning ISP pipeline
promotes a novel direction of research aiming at replacing the current tedious and expen-
sive handcrafted ISP solutions with data-driven learned ones capable of surpassing them in
terms of image quality. The advantages of learning-based methods are that they can implic-
itly learn the statistical information of natural images and allow joint solutions for multiple
tasks. However, the limited research [26, 30, 45, 47] mainly focuses on the improvement
of objective indicators or only targets closely related tasks. These methods customarily re-
quire a higher computational overhead, which is challenging to be taken into account by the
application.

In this paper, we propose LW-ISP to replace the entire ISP pipeline, achieving an ef-
fective balance of processing efficiency and performance. The first step is to design a tiny
U-Net as the base model and the Fine-grained Attention Module (FGAM) to reconstruct
the overall information during down-sampling processes. The second step towards incor-
porating contextual information into the upsampling blocks to preserve realistic details from
RAW inputs, we design a plug-and-play Contextual Complement Upsampling Block (CCB).
Finally, we design the heterogeneous distillation algorithm to train the teacher model based
on the target data and then distill the clean features from the teacher model to the student.

Our experiments demonstrate the superiority of the LW-ISP on the ISP dataset and its
subtasks. In a large-scale learning setup, our approach achieves a performance exceeding
SOTA methods on the ISP’s largest dataset and dramatically speeds up the inference process
(model parameters are reduced by 23 times and calculations are reduced by 81 times), as
shown in Fig. 1. Furthermore, our training techniques improve transfer performance on a
suite of ISP downstream subtasks such as image denoising and image enhancement. We
recommend that practitioners use this simple architecture as a baseline for future research.

To sum up, the contribution of this paper can be summarized as follows.

• We design a novel lightweight LW-ISP model to replace the entire ISP pipeline.
We evaluate the performance of LW-ISP on the ISP pipeline and different subtasks.
Plainly speaking, LW-ISP not only outputs processed images with higher subjective
and objective quality (PSNR: 0.38dB), but also takes less inference time (15×).

• We propose a fine-grained attention module to reconstruct the overall information and
determine a more reasonable upsampling block in low-level image processing.
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• We propose a heterogeneous distillation training algorithm to distill the spatial struc-
ture information and global information of the environment from the teacher model to
the student model.

2 Related Work
DL-based ISP Subtasks. Deep learning (DL)-based methods have achieved considerable
success in image preprocessing subtasks, including demosaicing [36], denoising [12], de-
blurring [63] and super-resolution [38], which all have achieved performance beyond con-
ventional algorithms. Studies have shown that even when operating outside of a supervised
learning mechanism, DNNs are proficient in generating high-quality images [50]. Recently,
researchers denoise on RAW images in order to avoid the effect of ISP [55]. Brooks et al.
creatively inversely transformed the color image and used it for the training [5]. Contrary to
the conventional methods of independently solving ISP subtasks, DL-based methods allow
multiple tasks to be jointly solved, which has great potential to reduce the computational
burden. However, existing schemes require more calculations.
DL-based ISP Pipeline. The application of DNNs to solve the ISP pipeline has gradually
attracted attention. As the first attempt of ISP with DL, DeepISP [47] divided the framework
into high-dimensional and low-dimensional feature extraction parts, which perform local
and global learning, respectively. Nevertheless, this method only considers two tasks of
image demosaicing and denoising. Ratnasingam et al. reconstructed RGB images into RAW
images to obtain a large number of training images [45]. PyNET [30] focused on the mobile
camera ISP pipeline and processed images from five different levels to obtain higher quality
information. However, the processing time in the CPU mode is as high as 100 seconds.
Moreover, some previous works [9, 13, 15, 26, 33, 35, 43] in AIM 2020 Challenge [29, 65]
and Mobile AI 2021 Challenge [31] have achieved appealing results. CSANet [26] designed
a double attention structure for mobile ISP while showing significant differences on other
datasets. Moreover, the replacement of ISP is also based on HDR [9] and extreme low-
light [61]. CameraNet [35] defined ISP as restoration and enhancement subtasks, which are
learned in two stages. More

In terms of replacing an existing handcrafted ISP pipeline, these methods pay too much
attention to the improvement of objective indicators or can only accomplish closely related
tasks. In this paper, we abandon the redundant architecture to replace the model of the entire
ISP pipeline. Moreover, we try to surpass the work of predecessors in ensuring a lightweight
model and realizing the real coordinated development of ISP and AI vision.

3 Proposing LW-ISP
In this section, we present an overview of our proposed LW-ISP, as illustrated in Fig. 2.
Instead of naively adopting multi-scale or serial modular architecture to process RAW input,
we take advantage of sophisticated structure and training strategies to achieve lightweight
and high performance. We design a tiny U-Net as the backbone, which only contains 24
layers of convolution. The bottom half of Fig. 2 shows our proposed end-to-end image
preprocessing network, LW-ISP, which is composed of two stages. The first stage pro-
gressively downsamples feature maps at different levels to accelerate the computation. The
second stage further concatenates the processed global vector with the tensor of the same
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Figure 2: The overview of our method LW-ISP. The bottom half is the main architecture,
which receives RAW input and execution feature reconstruction.

size in the first half of the network through the symmetric skip connection. More details and
codes about our architecture can be found in the supplementary material.

3.1 Fine-Grained Attention Module
As LW-ISP performs feature extraction on the RAW input in the first stage, more effective
and discernible features need to be passed on. Existing attention fusion structures [27, 56]
can reconstruct pixels in high-dimensional spaces. Furthermore, some research has been
proposed to implement the attention mechanism in low-level vision but exhibited completely
different negative effects in the ISP task [24, 60].
To address this issue, we propose the Fine-grained Attention Module (FGAM) suitable for
ISP, as shown in Fig. 3. The feature recalibration is achieved by performing the attention
of the channel and spatial dimensions in parallel and then indirectly fusing the intermediate
features. As to channel attention, given a feature map H ×W ×C, the squeeze operation
applies global average pooling (GAP) and two convolution layers followed by sigmoid gating
to generate activation vector 1×1×C. As for spatial attention, GAP and max pooling (GMP)
operate on feature map H ×W ×C along the channel dimension and concatenate the outputs
to yield a feature map H ×W ×2. Then passing through a convolution layer and sigmoid to
obtain the attention map H×W ×1. Specifically, in order to prevent the attention mechanism
from suppressing the characteristics of irrelevant regions, we find that the direct fusion of
spatial and channel attention should be avoided. In the FGAM, these two attention maps
separately add to the input feature and then concatenate across channel dimension.

3.2 Contextual Complement Upsampling Block
The Contextual Complement Upsampling Block (CCB) is composed of a contextual separa-
tion module for adaptive high frequency decomposition in the feature space, followed by the
CCB-Core that fuses the corresponding size (H ×W ) features of the previous stage. Unlike
PyNET [30] that hand over the upsampling operation to the conventional method (bilinear
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Figure 3: The fine-grained attention
module (FGAM) combines channel at-
tention (upper) and spatial attention
(lower) with the input feature and then
concatenate together.
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Figure 4: The contextual complement upsam-
pling block (CCB).

interpolation) to solve, we switch to PixelShuffle [48] and design CCB-Core to suppress the
loss of image information during zooming.
CCB-Core. As shown by the dashed box in Fig. 2 and Fig. 4, in addition to the original fea-
tures to be sampled, the input of CCB-Core also has the corresponding features (2H × 2W
for contextual decomposition and H×W for feature complementation) of the previous stage.
The CCB-Core first performs a sub-pixel convolution on input features (H×W features from
the first and second stages) to obtain global- and local-features. It should be noted that the
convolution operations before and after PixelShuffle are used for channel dimension adjust-
ment and fine-tuning, respectively. Subsequently, CCB-Core fuses the obtained features by
residual learning to derive coarse high-resolution features. The operation of CCB-Core can
be formulated as follows:

OFAU = P
(
O1

FBU
)
+P

(
O2

FBU
)
, (1)

where P and + stand for the functions of the sub-pixel convolution and residual learning,
respectively. FAU /FBU are short for the feature after/before upsampling, and the numbers
represent the stage of the feature.
Contextual Complement. This part is to learn contrast-aware features for image decompo-
sition. To select adaptive contextual information, we first use two groups of dilated convo-
lutions (with kernel size&dilation rate of 1&1 and 3&2), denoted as fd1 and fd2, to extract
features in different receptive fields. The effectiveness of this process will be verified in
Section 4.3. We then compute a contrast-aware map between the two feature maps as:

Cl = sigmoid ( fd1 (xin)− fd2 (xin)) , (2)

where Cl indicates the pixel-wise relative contrast information. Cl will eventually be con-
catenated to the OFAU of CCB-Core to complete the contextual complement.

3.3 Heterogeneous Distillation Algorithm
In knowledge distillation, although the source data distribution and processing dimensions
of several networks may be different, target models can still be imitated by knowledge dis-
tillation on the target data [24, 25]. For ISP, its reconstruction process requires more hidden
features and spatial structure information. In this paper, we propose a heterogeneous distil-
lation algorithm, as shown in Fig. 2. The teacher will learn a wealth of intrinsic attributes
from the clean inputs to assist the student network.

For the teacher network, we continue to adopt the basic structure of LW-ISP. The only
difference lies in the lack of an upsample block, due to the fact that RAW inputs will be half
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of the normal output after pre-processing. The teacher model will learn a clean mapping from
the ground truth of the training data. The student model, LW-ISP, will be supervised during
the training process, and no burden will be added during inference. We supervise the inter-
mediate features and compute the feature similarity to control the imitation learning from
the teacher to student. The determination of the position of the intermediate feature requires
to be carefully selected. Besides, the heterogeneous distillation can also be used to extend
the ISP pipeline to more fine-grained tasks. Experiments demonstrate that when applying
the heterogeneous distillation, the position of the intermediate feature needs to be carefully
selected, and the supervision provided in the first stage even harms the performance. We
cherry-pick the output of the last three upsample blocks.

3.4 Loss Function for LW-ISP
Based on the above distillation algorithm and full ISP’s requirements for local and global
correction and perceptual quality, we design multiple loss functions for training. The overall
loss of LW-ISP can be formulated as:

Loverall = Lr +α ·Ls +β ·Ld, (3)

where α and β are two hyper-parameters to balance the magnitude of Ls and Ld . The
sensitivity study and ablation study have been shown in Section 4.3.

Reconstruction Loss. Given a training sample I, the model result and ground truth can
be denoted as f (I) and J. To obtain the reconstruction result, we adopt the mean absolute
error (MAE) to measure the difference:

Lr = | f (I)− J| . (4)

Structural Loss. The multi-scale structural similarity (MS-SSIM [53]) loss is used here
to increase the dynamic range of the reconstructed photos:

Ls = 1−MS ·SSIM( f (I),J). (5)

Distillation Loss. The teacher network transmits the implicit information of the clean
image to the student through the intermediate representations. Denote Fm to be the feature
maps of the mth layer of the model, the same is true for n. The distillation loss (KD loss) is
formulated as:

Ld = ∑
(m,n)∈C

L2
(
Fs

m(I),
(
F t

n(J)
))

, (6)

where L2 is the L2-norm loss and C is a set of candidate pairs of feature locations. In this
work, m and n are set to be consistent. The superscript t and s denote the teacher model and
student model, respectively.

3.5 Loss for Teacher Network
To learn an effective feature representation from the teacher model, we design the following
loss function:

LT = (g(J)− J)2 + γ ·Ls, (7)

where g is the transform function and J is the clean image. γ is a hyper-parameter to balance
the magnitude.
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LW-ISP (Ours)-2.015MParamsHUAWEI P20 RAW PyNET-47.528MParams HUAWEI P20 Results

21.57 dB

21.19 dB

Figure 5: Sample visual results obtained with the proposed LW-ISP architecture (best
zoomed on screen). These four lines represent the output of HUAWEI P20 sensor, state-
of-the-art model PyNET, HUAWEI P20 camera and our method, respectively. Besides, the
two numbers represent the evaluation results of the model with the PSNR.

Method SRCNN[16] SRGAN[34] DPED[28] U-Net[46] Pix2Pix[32] SPADE[41] NAFNet[10] PyNET[30] LW-ISP

PSNR (↑) 18.56 20.06 20.67 20.81 20.93 20.96 21.12 21.19 21.57
MS-SSIM (↑) 0.8268 0.8501 0.8560 0.8545 0.8532 0.8586 0.8613 0.8620 0.8622

LPIPS (↓) 0.385 0.257 0.343 0.257 0.208 0.209 0.194 0.194 0.160

Table 1: Comparison experiment results (PSNR/MS-SSIM/LPIPS) on Zurich Dataset [30]
(numbers in bold are the best). ↑ denotes that the upward trend corresponds to better perfor-
mance, and ↓ denotes the downward trend.

4 Experiment
When learning RAW-to-RGB mapping with deep learning methods, we refer to it as smart
ISP. If the smart ISP is to be applied towards landing application, the first thing to solve is the
need for real-time inference and high imaging performance. In this section, we evaluate the
effectiveness of our method on Zurich RAW to RGB [30] (Zurich for short) dataset, which is
currently the largest ISP dataset. The effects of image denoising and enhancement are also
evaluated on the SIDD [1], DND [42] and LoL [54] datasets.

4.1 Results on Zurich Dataset
Effectiveness of LW-ISP. Due to limited deep learning research on the ISP pipeline, we
compare different image preprocessing architectures, including the existing state-of-the-art
method PyNET [30]. We adopt the mainstream image quality evaluation indicators PSNR,
MS-SSIM and LPIPS. Table 1 shows the quantitative performance of the proposed method
on the real RAW to RGB mapping problem. It is obvious that LW-ISP outperforms other
state-of-the-arts with the gain of at least 0.38dB in terms of PSNR and performs well on
MS-SSIM. Fig. 1 and Fig. 5 compare the visual effects of LW-ISP with the previous best
model PyNET and HUAWEI P20 after processing different RAW images. It is observed
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Model Lightweight [13] HERN [37] CameraNet [35] AWNet [15] Pynet-ca [33] LW-ISP (Ours)
PSNR (dB) 21.28 21.30 21.35 21.40 21.50 21.57
Params.(M) 31.56 39.64 26.53 55.70 56.89 2.01

Table 2: Comparison with SOTA methods (PSNR and number of parameters) on Zurich
Dataset [30] (numbers in bold are the best).

Model Number of Parameters FLOPS PSNR (dB)(224,224) (960,960) (1440,1984)

SPADE [41] 97, 480, 899 191.31G 3.16T 10.89T 20.96
PyNET [30] 47, 554, 738 342.698G 5.72T 19.513T 21.19

LW-ISP w/o FGAM 1, 660, 777 3.441G 63.198G 195.914G 21.40
LW-ISP w/ FGAM 2, 014, 681 4.234G 69.198G 211.914G 21.57

Table 3: Comparison of the number of the parameters and FLOPs (floating point opera-
tions) between our proposed method and the state-of-the-art methods. Note that LW-ISP w/o
FGAM does not adopt heterogeneous distillation and SPADE [41] is a linear architecture
with basically no long-distance cross-layer connection.

that the images taken by HUAWEI P20 are generally dark and over-render the sky and other
backgrounds. In contrast, the results of LW-ISP are more in line with the real characteristics
and can generate better details, which are verified by objective metrics. The recently emerg-
ing NAFNet [10] attempts to design a simple baseline for the field of image restoration, even
removing nonlinear activation functions. Our method surpasses the state-of-the-art backbone
(NAFNet) in low-level vision. We believe that the dark characteristics of the RAW data itself
require more refined processing.
Efficiency of LW-ISP. How much loss in quality is tolerable for the increase in speed?
Our model aims to achieve an effective balance between processing efficiency and algorithm
performance to promote the development of the smart ISP. Roughly, we provide LW-ISP w/o
FGAM and LW-ISP w/ FGAM in order to provide more options. LW-ISP w/o FGAM means
that the attention module FGAM is not added to LW-ISP. As shown in Table 3, compared to
the SOTA PyNET [30], LW-ISP can achieve up to 28.6 times of compression, and adding
FGAM can still reduce it by 23 times. The results also present the floating point operations
(FLOPs) under different resolution conditions. The calculation of the latest LW-ISP is 81
times less than PyNET. What is surprising is that LW-ISP can still achieve better performance
than the previous best method with a minimum acceleration of 15 times. When testing on
NVIDIA Tesla V100 GPU, LW-ISP takes 0.25 seconds to process 12MP photo (2944×3958
pixels), while PyNET takes 3.8 seconds. The memory usage and other params of our model
are presented in the supplementary.
Comparison with SOTA Methods. To solidify the performance of our method, we compare
the performance of more recent methods. Based on fair comparisons, comparative experi-
ments are performed without data augmentation and following our data preparation format
(no extra input or pre-training). We show PSNR and the number of parameters in Table 2.

4.2 Results on Subtasks

In this section, we evaluate LW-ISP on subtasks to further explore the potential of end-to-end
ISP model to reduce the calculation, comprehensively handle various tasks and generalize
migration. Specifically, we demonstrate the effectiveness on denoising and enhancement.
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Method DnCNN[64] TNRD[11] BM3D[14] WNNM[19] KSVD[2] EPLL[66] CBDNet[21] RIDNet[3] VDN[59] LW-ISP MIRNet[60]

PSNR 23.66 24.73 25.65 25.78 26.88 27.11 30.78 38.71 39.28 39.44 39.72
SSIM 0.583 0.643 0.685 0.809 0.842 0.870 0.754 0.914 0.909 0.918 0.959

Table 4: Denoising results on the SIDD dataset [1]. Compared to the previous methods, our
LW-ISP (numbers in bold) demonstrates a comparable performance. Blue font indicates the
value higher than our method.
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Figure 6: Sensitivity results of the param-
eters. (a) Learning Rate (LR): The initial
learning rate in the training process. (b)
Beta: The hyper-parameter β in Equation
(1) for the distillation loss Ld .

Backbone FGAM CCB Distillation PSNR (dB)

✓ 20.92
✓ ✓ 21.17
✓ ✓ 21.28
✓ ✓ ✓ 21.36
✓ ✓ ✓ 21.40
✓ ✓ ✓ ✓ 21.57

Table 5: Ablation study of our method. Back-
bone refers to the basic architecture of Sec-
tion 3.

Image Denoising. We train our network only on the training set of SIDD and directly evalu-
ate it on the test images of both SIDD and DND datasets. Quantitative comparisons in terms
of PSNR and SSIM metrics are summarized in Table 4 for SIDD. These experimental results
show the excellent performance of our LW-ISP under such lightweight conditions, which has
surpassed traditional data-driven algorithms. Furthermore, it is worth noting that our method
provides better results while RIDNet [3] uses additional training data, yet VIDNet [59] and
MIRNet [60] are much larger than LW-ISP.
Image Enhancement. Without using any additional data and tricks, we achieve quite com-
petitive results on the LoL [54]. The PSNR can reach 20.18 dB, surpassing previous methods
such as CRM [58] and MF [18].

4.3 Ablation Study

Study on Hyper-parameters. In Fig. 6 we show a sensitivity analysis of the parameters,
which are used for LW-ISP training on the ISP pipeline and its subtasks. It can be observed
that the LW-ISP backbone achieves the effect that we reported (20.92 dB) when the initial
learning rate is 8×10−5. In subfigure (b), we show the sensitivity study of β during LW-ISP
training (without structural loss Ls). It can be easily observed that our performance boost
holds for different values of β . The value of α has been set at 0.4.
Study on Architectural Components. Table 5 shows that FGAM and CCB can bring gains
of 0.25 dB and 0.36 dB respectively, and the combination of the two can bring 0.44 dB
gains. The baseline LW-ISP contains the base U-Net with a global feature vector and is
trained with Lr +Ls, denoted as the backbone. Moreover, the implicit features from clean
image learning by distillation are helpful and boost performance. More sensitivity studies of
the hyper-parameters and ablation studies of FGAM can be found in the supplementary.
Study on Distillation Algorithm. When designing the distillation algorithm, a key insight is
that we believe that the main structure (UNet) can be divided into image understanding and
image reconstruction processes respectively according to the down/up sampling steps. (1)
Our method can learn the reconstruction features corresponding to clean images under the
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supervision of the teacher during the upsampling reconstruction process. (2) We selected the
outputs of the last three upsampling blocks. When performing ablation experiments at clean
feature locations, the outputs of the four down/up sampling blocks are denoted as downi and
upi, respectively. It turns out that the closer the supervision to the RGB output location, the
more performance gains (baseline: 21.28dB, down1 + down2 + down3: 21.11dB, down4 +
up1 +up2: 21.33dB, up2 +up3 +up4: 21.40dB).
Study on FGAM. As to Fine-Grained Attention Module (FGAM), we use an addition op-
eration (+) instead of multiplication (*) to generate channel attention and spatial attention.
The reason is that we are surprised to find that the training process corresponding to the
addition operation is more stable, and the performance is better (+21.17dB, *21.05dB). To
perform a fair comparison, we experiment with the attention mechanism on the backbone.
Specifically, channel attention and spatial attention respectively achieved 21.10 dB (+0.18)
and 21.04 dB (+0.12). Our experimental results demonstrate that the combination fashion of
channel attention and spatial attention in the FGAM is pretty essential. Unlike MIRNet [60]
or CBAM [56], the attention map output by each branch will be added to the input feature
point-to-point, and then the two will be concatenated across channel dimension. It is ob-
served that: (a) The multiplication of the attention map and the input feature that will lead
to sub-optimal results (21.05dB). Note that the baseline and the results after adding FGAM
are 20.97 dB and 20.17 dB, respectively. (b) It is unnecessary to add a convolutional layer
with a kernel size of 1×1 to reduce the number of channels. It will reach a result of 20.11 dB
(+0.14 dB), still 0.06 dB from the optimal result. (c) The FGAM position should be placed
after the downsample block. If the position is reversed, it only reaches 20.04 dB (+0.07 dB),
which is 0.13 dB away from the optimal result.

5 Discussion and Future Work
Deep Application of ISP. With the further collaborative development of ISP and AI vi-
sion, we believe that the collaboration between RAW data processed by neural networks and
subsequent DL-based tasks will be more worth looking forward to in both theory and appli-
cation. For instance, there is no unified conclusion on the objective evaluation standard of
the processed photos. The effect of the smart ISP on the subsequent tasks may be a brand
new viewpoint. What’s more, smart ISPs can also integrate and learn from downstream tasks
such as image recognition. The cooperation between the CNN accelerator and the ISP also
requires a unique design. The pipeline that derives from this integration of hardware-friendly
tradition and smart ISP will be a new direction.

6 Conclusion
In this paper, we propose the LW-ISP to achieve real-time and high performance processing
in smart ISP. The entire network implicitly learns the image mapping from RAW data to RGB
photos, and utilizes the fine-grained attention module (FGAM), the contextual complement
block (CCB) and heterogeneous distillation algorithm to reconstruct high-quality images.
Abundant experiments show that LW-ISP has achieved state-of-the-art performance. The
model parameters have been reduced by 23× and the inference time has been accelerated
by at least 15×. Specifically, the results show that a U-Net (trained in the right manner) can
replace much larger nets.
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