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Abstract

Fonts can convey profound meanings of words in various forms of glyphs. Without
typography knowledge, manually selecting an appropriate font or designing a new font
is a tedious and painful task. To allow users to explore vast font styles and create new
font styles, font retrieval and font style transfer methods have been proposed. These tasks
increase the need for learning high-quality font representations. Therefore, we propose
a novel font representation learning scheme to embed font styles into the latent space.
For the discriminative representation of a font from others, we propose a paired-glyph
matching-based font representation learning model that attracts the representations of
glyphs in the same font to one another, but pushes away those of other fonts. Through
evaluations on font retrieval with query glyphs on new fonts, we show our font repre-
sentation learning scheme achieves better generalization performance than the existing
font representation learning techniques. Finally on the downstream font style transfer and
generation tasks, we confirm the benefits of transfer learning with the proposed method.

1 Introduction

A font, which is a graphical representation of text, delivers certain visual feelings in multi-
media through its matching style set of glyphs. Professional designers carefully choose fonts
to convey their design intent. However, it is challenging to search for a specific font in the
vast number of fonts available. Moreover, designing fonts requires typography knowledge,
and aspiring designers can take months to learn typography. To cope with these difficul-
ties, fonts should be easier to search for and create. There has been active research on font
retrieval [4, 15, 16, 19, 24], font style transfer and generation [1, 11, 40, 42].

Font retrieval is a task that allows users to find similar looking fonts. Users can browse the
fonts in the latent space to find the font they want. Through recognizing font style and gener-
ating new glyphs with the corresponding style, font style transfer and generation can ease the
labor-intensive job of creating numerous glyphs with a certain font style. Font retrieval, style
transfer and generation have historically focused on their own specific goals. However, if a
powerful font representation learning method is devised, these tasks are considered down-
stream tasks, and performance gains can be expected through transfer learning [21]. There-
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Figure 1: (a) Challenging fonts to distinguish. (b) Various fonts tagged as "Cute", "Techno"
and "Old English", (c) Notations of glyphs g and glyph set G f for font f

fore, we present a novel font representation learning scheme for the broader generalization
on font-related downstream tasks. However, learning fonts is not as easy as one might think.
Five fonts shown in Figure 1 (a), ShareTech, UbuntuCondensed, Strait, Telex, Signika are
very difficult to distinguish with our eyes. Unlike general objects with textures [8], fonts have
typographic elements (e.g., cap, x-height, serif, stem, stroke, descender, ascender, aperture)
which are shape-based representations. Therefore, distinguishing these nuances is important
for learning high-quality font representations.

In this paper, to mitigate the aforementioned difficulties, we approach how to learn these
nuances through pairwise glyph similarity learning. More specifically, we try to learn the
style representation of a font regardless of the shape of the character. That is, each font style
keeps its unique nuance though the glyphs in the font have diverse shapes, which is referred
to as Glyph-font-consistency. Paying attention to this unique nuance, we propose a new rep-
resentation learning scheme to learn font features, keeping Glyph-font-consistency through
a paired-glyph matching strategy. The proposed scheme attracts the font representations of
glyphs in the same font to one another, but pushes away those of other fonts. We study
generalization ability of our discriminative font representation learning scheme compared to
existing font representation learning techniques. Finally, we evaluate performance improve-
ment by transfer learning of our font representation learning scheme in the downstream font
style transfer and generation tasks.

2 Related Works

2.1 Font Classification & Retrieval

Font classification and recognition models [3, 31, 32, 44, 45] are used to increase perfor-
mance in text detection and recognition [2, 27], to make difficult calligraphy easier for users
to recognize [25]. These methods of font classification only work with fixed sets of fonts, so
they lack generalization to countless number of unseen fonts. Therefore, various retrieval-
based methods [4, 15, 16, 19, 24] have been proposed for learning font representation and
various related applications. Before the deep learning-based method appeared, Kataria et

al. [16] extracted the SIFT (Scale-Invariant Feature Transform) [20] feature from each glyph
of the font and defined the concatenation of glyphs as the font embedding. O’Donovan et

al. [24] defined the attributes (e.g., artistic, attractive, pretentious) of fonts and used crowd-
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sourced way to annotate the font attributes. And by learning a model to predict the attributes
of fonts, O’Donovan et al. predicted attributes even for unseen fonts. However, specifying
font attributes and determining their values is a rather subjective task, and the cost of anno-
tations is very high, which limited annotations for small number of fonts. In light of this,
tag-based font retrieval websites with relatively low annotation costs (e.g., dafont.com,
myfonts.com, 10001fonts.com) appeared.

These websites provide a tag-based font search service that allows users to select and
download selected fonts. Figure 1 (b) shows how users can search for fonts based on a query
(e.g., cute, techno, Old English). However, the tag-based font search has the disadvantage
that, much like the problem with tag-based image searches, the tag does not sufficiently
describe the font, and even appropriate tags may be subjective. With the advent of deep
learning, some tag-based font retrieval studies [4, 15, 19] have tried to associate font tags
to learn font representation in a data-driven manner. These studies proposed a method to
perform tag classification [4] on fonts or to share the font latent space with the tag represen-
tation through Word2vec [15, 19, 22]. They investigated how the specific glyph shape of a
font was related to a specific emotional font tag. However, these methods cannot learn font
embedding without font tags.

2.2 Font Style Transfer & Font Generation

The necessity of font style transfer methods comes from the tedious and labor-intensive
job of creating numerous glyphs with font style. For example, Chinese contains more than
60,000 characters and Korean contains 11,172 characters. Early font style transfer meth-
ods [10, 33, 39, 40] were based on image-to-image translation models [13, 23, 29] with the
advance of generative adversarial networks [9]. These methods transferred the font style of
one glyph image to another glyph image. These methods typically extracted font style fea-
tures from glyph images for reference via a font style encoder model. Each method focused
on the structural design of the font style encoder, because the style encoder needed to learn a
good font representation so the font style was represented well in the output image. That is,
better font representation learning was helpful for better quality font generation.

3 Methodology

3.1 Notations and Our Research Objective

To establish appropriate context, it is important to outline how we denote characters, glyphs
and fonts. A character set is defined by a class of characters, for instance, C0-9 = {0,1,2, ...,9},
Ca-Z = {a,b,c, ...,X ,Y,Z} and C0-Z = {0,1,2, ...,9,a,b,c, ...,X ,Y,Z}. A glyph is an image
form of a character that has a specific style in a font. For example, if a glyph describes the
character “Z” with a certain font f1, we denote the glyph as g

Z

f1
. Figure 1 (c) shows that a

font f1 includes a matched set of glyphs for a character set C. For example, the glyph set
with font f1 of character set C0-Z is denoted by

GC0-Z
f1

= {g
c

f1
|c 2 C0-Z}= {g

0
f1
,g1

f1
,g2

f1
, ...,gX

f1
,gY

f1
,gZ

f1
}⇢ G f1 . (1)

Denoting the set of all fonts in the world by F, two different fonts fi, f j 6=i 2F convey different
styles through two glyph sets (G fi

= {g
c

fi
|c 2 C} and G f j

= {g
c

f j
|c 2 C}).
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Figure 2: Overall scheme of Paired-glyph Matching learning

Based on the intrinsic relationship between fonts and glyphs, our research objective is
to embed the fonts to representation space so that the glyphs in the same font are embedded
into a small representation area far from those of the other fonts. To this end, we propose a
Paired-glyph Matching learning scheme to pull the font representations of all glyphs in G fi

closer to one another but push away from the font representations of the glyphs in the other
glyph sets G f j 6=i

and vice versa, as shown in Figure 2.

3.2 Paired-glyph Matching Learning

In Paired-glyph Matching learning, we randomly sample two fonts, f1 and f2, and two char-
acters, c1 and c2. Then, we get a set of four glyphs {g

ci

ft
|t = 1,2; i = 1,2} expressing the font

ft for the character ci. For the objective function to train F , we use cosine similarity given
by sim(u,v) = u

T
v

kukkvk as the dot product between L2 normalized u and v, where u,v are the
font representations. We train the model F to map the glyphs from the same font into similar
representations and those from different fonts into discriminative representations. That is, we
maximize sim(F(gc1

ft
),F(gc2

ft
)), t = 1,2 and minimize sim(F(gci

f1
),F(gci

f2
)), i = 1,2. Glyphs

of the same character look alike in the image space, even though their fonts are different
from one another. However, the aforementioned objective drives the different font glyphs of
the same character to be embedded far away from one another in the latent space. That is,
we train the model F to focus on the font style of a glyph more than the shape of a character.

To generalize Paired-glyph Matching with a minibatch of N fonts, we randomly sample
fonts { f1, f2, ..., fN} from the training set. We randomly sample two different glyph images
for each font as {{g

C
1
n

fn
,g

C
2
n

fn
}|n = 1, · · · ,N}. That is, for all n in 1  n  N, there are N

positive glyph pairs in the minibatch. Therefore for each glyph, remaining 2(N � 1) glyphs
are negative samples. Our model F maps every glyph images in the minibatch into font
representation vectors in the latent space. The similarity of the embedding fonts for positive
pairs and for negative pairs are defined by

pos-sim( fn) = exp
⇣
sim

⇣
F(g

C
1
n

fn
),F(g

C
2
n

fn
)
⌘
/t
⌘
, (2)

neg-simk( fn, fm6=n) =
2

Â
l=1

exp
⇣
sim

⇣
F(g

C
k
n

fn
),F(g

C
l
m

fm
)
⌘
/t
⌘
, (3)

where t is temperature scaling parameter. Then final loss L is sum of losses for each learning
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Figure 3: Font representation learning techniques. f̂ is a font embedding in the latent space
for each method.

font fn is given by

L=
1
N

N

Â
n=1

 
�

2

Â
k=1

log
pos-sim( fn)

pos-sim( fn)+ÂN

m=1,m 6=n
neg-simk( fn, fm 6=n)

!
. (4)

The loss (4) is derived from “the normalized temperature-scaled cross entropy loss” [5].

4 Experiments

4.1 Baselines

Figure 3 shows baselines of font representation learning technique and our method Paired-

glyph Matching. These methods all share font embedding network F as their backbone net-
work. We consider the output of F from glyph g, f̂ = F(g) as font embedding. Comparing
font representation learning baselines (i.e., Classification [32], Style Transfer [40, 42], Au-
toencoder [30, 37], Attribute Prediction [4, 24] and Srivatsan et al. [28]) are more described
in Section A of the supplementary material.

4.2 Datasets

O’Donovan et al. [24] dataset contains 1,088 fonts for the training set (Ftrain = { fi|1  i 
1,088}) and 28 fonts for the validation set. Each font contains 62 alphanumeric characters
(C0-Z). Thus, there are total 1,088⇥ 62 glyph images in training set. Among the fonts in
the training set, each font in { fi|1  i  120} is annotated by 37 attributes. Each attribute is
described by a high-level expression, such as “dramatic" or “legible". Each attribute value
ranges from 0 to 1. The attribute value vector of each font in { fi|1  i  120} is denoted by
ai 2 A, where A is the attribute set, i.e., A = {a1,a2, ...,a120},8ai 2 [0,1]37. The remaining
fonts of the training set (i.e., { fi|121  i  1,088}) are not annotated by any attributes.

Open Font Library (OFL), which is provided by Google Fonts1, provides 1,076 typefaces
(font families). A typeface consists of several fonts that share a specific design. In this paper,
we do not consider typeface, thus, fonts in a typeface are regarded as different fonts. For
instance, the typeface “Bauer Bodoni” includes “regular”, “bold”, and “italic” fonts, which

1https://github.com/google/fonts
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are considered different fonts in our work. Finally, we collected 3,802 fonts for the alphanu-
meric character set (C0-Z). We randomly partitioned 3,702 fonts for the training set and the
remaining 100 fonts for the validation set. Since these fonts are provided in “ttf” and “otf”
file formats, we converted each font file into 62 glyph images.

Capitals64 [1], which was used by Srivatsan et al. [28], contains capital letters (CA-Z).
The dataset is split into train, validation, and test sets of 7,649, 1,473, and 1560 fonts, re-
spectively. We used this dataset to compare our method with Srivatsan et al. method.

4.3 Implementation Details

Throughout all experiments, we used a single NVIDIA 2080ti or 1080ti gpu. We did not
observe a performance boost by tuning the last dimension of the projection head, as the
previous research [5]. Random sized crop augmentation was only used in our Paired-glyph

Matching and Attribute Prediction as it degrades the retrieval mean accuracy of other base-
lines. The batch size was 64 samples for each font, and the image input size was 64⇥ 64.
Bigger image size did not gain benefit on the retrieval mean accuracy score. We used glyphs
representing Ca-Z for the O’Donovan and OFL datasets and CA-Z for the Capitals64 dataset.
We used the Adam [17] optimizer with a learning rate of 2e�4 for all models and datasets.
We used ResNet18 [12] as the backbone network of font embedding network F for all mod-
els because other deeper neural network architectures were not effective. Font embedding
was average pooled vector from output of the backbone network. The temperature scaling
parameter t of Equation 2 has been used as 0.1 for the OFL and Capitals64 dataset and 0.2
for the O’Donovan dataset.

Denoting feature dimension by feat_dim, we used feat_dim = 512 for all models
for training the O’Donovan dataset and feat_dim = 1,024 for all models for the big-
ger OFL dataset. We used 5 transposed convolution layers and a last up-sample layer for
the generator network G of Autoencoder and Style Transfer models to generate 64⇥ 64 di-
mensional images from font embedding vectors. The last 4 transposed convolutions were
followed by self-attention modules [38, 43] and instance normalization [34]. The generator
G of Style Transfer accepts (feat_dim+ |C|)-dimensional vector, which is concatenation
of font and one-hot character embedding. Denoting a fully connected layer of the weight ma-
trix d1 ⇥ d2 as FC(d1⇥d2), the Classification head (Fcls)is FC(font_dim⇥|Ftrain|), the Attribute

Prediction head (Fattr) is FC(font_dim⇥37). Following previous research [5], we also used
a projection head and L2 feature normalization on Paired-glyph Matching. The projection
head is FC(font_dim⇥font_dim) �ReLU� FC(font_dim⇥70). More details (e.g., the gener-
ator G architecture of Style Transfer and Autoencoder ) are presented in Section B of the
supplementary material. Codes are available at https://github.com/junhocho/
paired-glyph-matching.

4.4 Experimental Results

To evaluate how well glyphs in a font are embedded in the latent space, we use the retrieval
mean accuracy (MACC

Ret

(Ca-Z)) as described in Section C of the supplementary material.

4.4.1 Evaluation on Unseen Fonts (O’Donovan and OFL datasets)

Table 1 presents the performances on font embeddings f̂ of all methods (i.e., Paired-glyph

Matching, Classification, Style Transfer, Autoencoder and Attribute Prediction) depending on
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Table 1: Performance evaluation (MACC
Ret

(Ca-Z) ) when trained on the O’Donovan dataset.

Methods Data portion O’Donovan OFL
MACC

Ret

(Ca-Z) MACC
Ret

(Ca-Z)

f̂ of Paired-g Matching
{ fi|1  i  1,088} + A 89.91 66.46

{ fi|1  i  1,088} 89.60 64.53

{ fi|1  i  120} 72.03 45.06

f̂ of Classification [32]
{ fi|1  i  1,088} + A 83.11 58.56
{ fi|1  i  1,088} 83.90 57.36
{ fi|1  i  120} 63.08 35.33

f̂ of Style Transfer [40, 42]
{ fi|1  i  1,088} + A 76.71 36.71
{ fi|1  i  1,088} 71.84 36.88
{ fi|1  i  120} 65.07 30.00

f̂ of Autoencoder [30, 37]
{ fi|1  i  1,088} + A 57.87 31.97
{ fi|1  i  1,088} 27.13 13.96
{ fi|1  i  120} 29.43 12.31

f̂ of Attribute Pred. [4, 24] { fi|1  i  120} + A 64.08 38.02

Table 2: Performance evaluation (MACC
Ret

(Ca-Z) ) when trained on the OFL dataset. Paired-
glyph Matching † and ‡ are each trained with different similarity-based losses [14, 26].

Methods OFL valset O’Donovan valset
f̂ of Paired-glyph Matching 91.82 75.44

f̂ of Classification [32] 83.67 68.48
f̂ of Style Transfer [40, 42] 82.24 46.23
f̂ of Autoencoder [30, 37] 15.55 26.66

f̂ of Paired-glyph Matching † 88.93 72.98
f̂ of Paired-glyph Matching ‡ 82.70 54.28

training data portion in the O’Donovan dataset. For every 100 epochs until 15,000 epochs,
we evaluated the models on the O’Donovan validation set with the retrieval mean accu-
racy. Note that models had not seen fonts in the validation set. We found and reported
the best score on the O’Donovan validation set and then evaluated the model with same
weights on the OFL validation set. First of all, we compare when training only small por-
tion ({ fi|1  i  120}) of fonts in Table 1 and the performance was excellent in the or-
der of Paired-glyph Matching (72.03), Style Transfer (65.07), Attribute Prediction (64.08),
Classification (63.08), Autoencoder (29.43). It is notable that Paired-glyph Matching out-
performed Attribute Prediction even without richer font annotations A. To see the effec-
tiveness of font attribute data A, we jointly trained Paired-glyph Matching, Classification,

Style Transfer, Autoencoder with Attribute Prediction (Fattr in Figure 3 (b)) and reported
as { fi|1  i  120}+A in the data portion column of Table 1. We found training font at-
tributes (+A) to have no significant difference in Paired-glyph Matching and Classification.
This indicates that font attribute data may not be worth the high annotation cost to train font
representations.

Table 2 presents the performances of all font embedding methods trained on the OFL
dataset. We found and reported the best score on the OFL validation set until 25,000 epochs
and then evaluated the model with same weights on the O’Donovan validation set. Since,
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Style Transfer Classification Paired-! Matching!! !" !# !$ !% !! !" !# !$

Style Transfer Classification Paired-! MatchingAutoencoder
Latent space of font embeddings "#
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(b)
Figure 4: (a) Font latent space of (a) the OFL dataset and (b) the O’Donovan dataset anno-
tated by font classes for each embedding methods. The Red and the cyan boxes respectively
include font classes { f1, f2, f3, f4, f5} and { f6, f7, f8, f9}.

there are more possible solutions (e.g, triplet loss [26] or other self-supervised methods [6,
14, 35]) to learn similarities in paired-glyph matching learning, we include Paired Glyph
Matching †, ‡ which are respectively trained with losses based on deep clustering algorithm
(PICA) [14] and triplet loss [26]. We observed that paired-glyph matching learning with the
loss (4) performed the best compare to other similarity learning approaches †, ‡ [14, 26].

To visually understand how comparing methods perform, we used T-SNE [36] projection
on the font latent space as in Figure 4. From observations in the font latent space of the
OFL dataset (Figure 4 (a)) and the O’Donovan dataset (Figure 4 (b)), glyphs in a font were
better clustered in the order of Paired-glyph Matching, Classification, and Style Transfer.
In particular, note the red and cyan boxes in Figure 4 (b). Style Transfer and Classification

methods do not distinguish the glyphs of the fonts f1, f2, f3 in the red box and f6, f7 in the
cyan box, but our method distinguished them relatively well.
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Table 3: Performance evaluation (MACC
Ret

(CA-Z) and Font attribute prediction) on the Capi-
tals64 dataset. All methods are trained on Capitals64, validated and tested on Capitals64.
Font attribute prediction is evaluated on O’Donovan dataset with L1-error.

Methods Captials64 valset Captials64 testset O’Donovan
MACC

Ret

(CA-Z) MACC
Ret

(CA-Z) L1-error

f̂ of Paired-g Matching 61.38 62.66 0.09589

f̂ of Classification [32] 55.27 56.31 0.1275
f̂ of Style Transfer [40, 42] 32.22 32.53 0.1217
f̂ of Autoencoder [30, 37] 13.60 14.16 0.1312
f̂ of Srivatsan et al. [28] 11.72 11.56 0.1097
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Figure 5: Font latent space of Paired-glyph Matching and Srivatsan et al. [28] annotated
by font attributes (i.e., Angular, Attractive, Boring, Delicate, Modern, Strong, Thin). Both
methods are trained on Capitals64 and tested on the O’Donovan dataset.

4.4.2 Evaluation on Unseen Fonts (Capitals64 dataset)

Table 3 presents the performances of font representation learning methods (i.e., Paired-glyph

Matching, Classification, Style Transfer, Autoencoder and Srivatsan et al. [28]) on the Cap-
itals64 dataset and the O’Donovan dataset. Similar to Table 1 and 2, our method performs
the best in the retrieval mean accuracy MACC

Ret

(CA-Z) measure. To more quantitatively evalu-

ate representation power of f̂ , we trained font attribute (A) prediction task, which is similar
to linear evaluation protocol [5]. That is, we train a linear mapping from font embedding
f̂ of each method to 37 font attributes and validate with L1-prediction error. We trained
120 fonts and validated 28 fonts in O’Donovan dataset, varying learning rate in range of
[1e�6,1e�5,1e�4,1e�3,1e�2] and reported the lowest L1-error in Table 3 last column.
Our method outperformed Srivatsan et al. by predicting font attributes with lower error.

In Figure 5, we observed the latent space of the O’Donovan fonts with attribute annota-
tions A. Refer to Srivatsan et al., we took max-pooling operation on embeddings of glyphs in
a font and regarded it as the font embedding. Each font in the O’Donovan dataset is colored
with respective attribute value in Figure 5. Despite not training on font attribute data (A),
both methods gathered fonts according to values of the font attributes.
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Figure 6: Image L1-error measured in (a) font style transfer and (b) font generation
(Attr2Font [41]) with the OFL dataset pretrained and random initialization.

4.4.3 Transfer Learning to Font Style Transfer & Generation.

In this experiment, we checked the transfer learning performance in font style transfer (See
Section A.4) and font generation (Attr2Font [41]) as downstream tasks. We used pretrained
weights from the best-performing models F (i.e., Paired-glyph Matching, Classification,

Style Transfer and Autoencoder from Table 2) on the OFL dataset and applied transfer learn-
ing to O’Donovan dataset, which is smaller the OFL dataset. To evaluate the generation
quality of font style transfer model, we calculated average L1 errors for all images generated
from a input glyph and an one-hot character embedding as follows:

L1-error=
1

|Fval|⇥ Idim
Â

f2Fval

Â
Ci,C j2C

kG

⇣
F(gCi

f
),cC j

⌘
�g

C j

f
)k1,

where Idim = H ⇥W ⇥C is number of pixels in an image. For the Attr2Font model [41],
which performs attribute-based font generation as a downstream task, we initialized the
“style encoder” with the aforementioned pretrained weights, and L1-error is similarly
defined. Note that we scratch-train the generator G weights of Autoencoder and Style Trans-

fer. In Figures 6, we measured performance gains of pretrained models over random ini-
tialized baseline. Interestingly, the models trained in the generative way (i.e., Autoencoder,

Style Transfer) on the OFL dataset seemed to be better in the downstream generative tasks
than the model trained through Classification. As a result, we determined that Paired-glyph

Matching performed the best, showing that our method can be useful as transfer learning to
the generative tasks.

5 Conclusion

In this paper, we proposed a new discriminative font embedding method that attracts the
representations of glyphs in the same font to one another but pushes away glyphs in other
fonts. Our method needed neither a generator network nor font attribute tags because we ac-
tively take advantage of Glyph-font-consistency. Through extensive evaluation, we show our
model outperformed the conventional representation learning techniques for generalization
to unseen fonts. Finally, we confirmed the benefits of our method for transfer learning in the
font style transfer and generation tasks.
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