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Abstract

Top-performing landmark estimation algorithms are based on exploiting the excel-
lent ability of large convolutional neural networks (CNNs) to represent local appearance.
However, it is well known that they can only learn weak spatial relationships. To address
this problem, we propose a model based on the combination of a CNN with a cascade of
Graph Attention Network regressors. To this end, we introduce an encoding that jointly
represents the appearance and location of facial landmarks and an attention mechanism to
weigh the information according to its reliability. This is combined with a multi-task ap-
proach to initialize the location of graph nodes and a coarse-to-fine landmark description
scheme. Our experiments confirm that the proposed model learns a global representation
of the structure of the face, achieving top performance in popular benchmarks on head
pose and landmark estimation. The improvement provided by our model is most signifi-
cant in situations involving large changes in the local appearance of landmarks. The code
is publicly available at https://github.com/andresprados/SPIGA

1 Introduction
Landmarks (or keypoints) are a widely used representation to address high-level vision tasks
such as image retrieval [18], facial expression recognition [23], face reenactment [35], etc.
The performance of computer vision algorithms on the final task depends, to a great extent,
on the accuracy and robustness of this intermediate representation. Thus, although many
algorithms with excellent performance have recently emerged, research is still very intense
in this area.

Top facial landmark estimation methods may be broadly grouped into coordinate and
heatmap regression approaches. Coordinate regression approaches directly estimate the
landmark position by projecting the representation estimated by a CNN encoder onto a set
of 2D coordinates [6, 7, 12, 17, 24]. They are the most efficient since they only require an
encoder architecture to compute the facial representation. The heatmap regression approach
is based on appending multiple encoder-decoder modules to estimate a 2D data structure
modeling the landmark position likelihood, the heatmap [8, 9, 10, 13, 30, 31]. The landmark
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coordinates are typically estimated at the maximum of each heatmap. This architecture pro-
vides an increase in accuracy at the expense of a considerable boost in computational and
memory requirements. A fundamental limitation of both approaches is their degradation
when there is ambiguity or noise contaminating the local landmark appearance. This typi-
cally happens at the presence of occlusions, heavy make-up, blur and extreme illuminations
or poses. This is because of the known fact that CNNs cannot learn simple spatial relation-
ships [21] and, in the case of facial landmarks, are unable to learn a global representation
of the face structure. However, a human face is a highly structured object with a prominent
landmark configuration. Therefore, an effective way of representing the local appearance of
each landmark and its geometric relationship to the other landmarks is needed.

This problem has been partially addressed in the literature with a local attention mod-
ule combining landmarks with facial boundaries [9, 10, 31]. This is a solution that learns
short-distance geometrical relationships. An alternative solution combines the advantages of
a CNN description with traditional Ensemble of Regression Trees (ERT) [25, 26]. Although
this solution is able to learn long-distance geometrical dependencies, it is not fully satisfac-
tory because of the limited learning capabilities of ERTs and the impossibility of end-to-end
training. Other approaches use a Graph Convolutional Network (GCN) to learn the facial
geometrical structure [16, 17]. This is achieved by combining the landmark local descrip-
tion, extracted from the CNN representation, with geometrical information represented by
the relative landmark locations. However, poor initialization and the lack of an advanced
attention mechanism reduce the performance of these models. More recent approaches use
transformers [15, 32] in a cascade shape regressor, obtaining very good results due to the
built-in attention mechanisms.

In this paper, we present the SPIGA (Shape Preserving wIth GAts) model for the esti-
mation of human face landmarks. We follow the traditional regressor cascade approach [2]
and present an algorithm that combines a multi-stage heatmap backbone with a cascade of
Graph Attention Network (GAT) regressors [28]. The backbone provides a top-performing
facial appearance representation. The cascaded GAT regressor is endowed with a positional
encoding and attention mechanism that learn the geometrical relationship among landmarks.
Another element of our proposal that improves the convergence of the GAT cascade is a
coarse-to-fine feature extraction procedure and a good initialization. To do this, we train our
backbone with a multi-task approach that also estimates the head pose, using its projection
to establish the initial landmark locations. We evaluate the performance of our proposal in
300W, COFW-68, MERL-RAV and WFLW datasets. It achieves top performance on both
head pose and face landmarks estimation. The improvement is most significant in situations
involving large appearance changes, such as occlusions, heavy make-up, blur and extreme
illuminations. We make the following contributions: 1) A GAT cascade with an attention
mechanism to weigh the information provided by each landmark according to its reliability;
2) A positional encoding to jointly represent relative landmark locations and local appear-
ance; 3) A multi-task approach to initialize the location of graph nodes; 4) A coarse-to-fine
landmark description scheme.

2 Shape Regressor Model
We propose a coarse-to-fine cascade of landmark regressors [2, 4] that iteratively refines the
landmarks coordinates while preserving the face shape. Our approach involves three critical
components: 1) the initialization, 2) the features used for regression, and 3) the regressors
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Figure 1: Regressor architecture with a two-step cascade.

that estimate the face shape deformation at each step of the cascade.

In our proposal, we use a multi-task CNN backbone to provide both, the initialization
and the local appearance representation. We set the initial shape of the face, x0 ∈ RL×2,
by projecting L landmarks from a generic 3D rigid face mesh oriented using the head pose
backbone prediction. At each cascade step t, a GAT-based [28] regressor computes a dis-
placement vector, ∆xt , to update the landmarks location, xt = xt−1 +∆xt . After K steps, the
final face shape is xK = x0 +∑

K
t=1 ∆xt . We denote the 2D location of l-th landmark at step t

as xl
t ∈ R2. In Fig. 1 we show the regressor with a two-step cascade configuration.

2.1 Initialization by Head Pose Estimation

Our multi-task backbone, termed Multi Task Network (MTN), is a cascade of M encoder-
decoder Hourglass (HG) modules. Each HG module in MTN is composed of a shared
encoder with two task branches: 1) a 3D head pose estimation branch and 2) a landmark
estimation decoder to the end of which we attach the next HG module. Defining and balanc-
ing the depth of the three components is a critical factor to boost the head pose estimation
accuracy. We supervise the h-th module pose head by comparing its estimation, p ∈ R6,
with the ground truth, p̃, using the L2 loss, Lh

p(p, p̃) = ||p̃−p||2. Our annotations for pose,
p̃, are obtained from the ground truth landmarks using a rigid head model (see Fig. 1). In
the landmarks task we optimize a coordinate smooth L1 loss (Lcoord) enhanced by a local
attention mechanism (Latt ) on the heatmaps, like [10, 30]. The final landmark loss is defined
as Llnd = ∑

M
h=1 2h−1(λcLh

coord +λattLh
att), where λ ’s are scalars empirically optimized. For

further details, please see the supplementary material.

To obtain a top-performing head pose estimation model (see Table 1) we pre-train the
network only with the landmark task, Llnd , and fine-tune with both tasks, landmarks and
pose, like [27]. For multi-task fine-tuning we use the loss Lmt = Llnd + λp ∑

M
h=1 2h−1Lh

p,
where λp is a hyperparameter. Although we use intermediate supervision at every HG mod-
ule, the prediction of p to estimate x0, as well as the visual features, are extracted from the
last module. Let X ∈ RL×3 be the 3D coordinates on the 3D head model that correspond to
the L 2D landmarks. If the pose estimated by the backbone is given by p, then the initial
shape, x0, is computed by projecting the 3D model, x0 = π(X;p), where π(·) is the 3D→2D
projection function.
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Figure 2: Appearance and shape feature extraction for the t-th step regressor.

2.2 Geometric and Visual Feature Extraction

For each step in the cascaded regressor, the input features are a combination of local appear-
ance at each landmark (i.e. visual features) and global representation of the facial structure
(i.e. geometric features). How visual and positional information is extracted and combined
has a direct impact on the performance of the regressor (see Table 5).

Let F be the output feature map of the last stacked HG module in the MTN. We extract
local appearance information from a square window, Wt , of size wt ×wt , centered at each
landmark location, xl

t−1, in F. We use a fixed affine transform with a grid generator and
sampler [11] to crop and re-sample Wt at a fixed size, regardless of wt . Then, using convo-
lutional layers, we extract the visual features, vl

t , corresponding to the l-th landmark at step
t. We iteratively reduce wt at each step t, in a coarse-to-fine approach.

Positional information is crucial to maintain the shape of the face when local appearance
alone is not sufficient (e.g. in presence of occlusions, blur, make-up, etc.). Relative distances
between landmarks provide enhanced geometrical features compared to their absolute loca-
tions since they explicitly represent the facial shape. This relative positional information can
be defined from displacement vectors between landmarks [16]. Let ql

t = {xl
t−1 −xi

t−1}i̸=l ∈
R2×(L−1) be the displacement vector corresponding to l-th landmark in the t-th step. In con-
trast to [16], we learn a high dimensional embedding from ql

t using a Multi layer Perceptron
(MLP), rl

t = Φt(ql
t), that facilitates the aggregation of the visual local appearance and the

facial shape information. In the experiments, we show that this way of encoding relative
positional information in r improves the shape-preserving ability of the network (see section
3.4).

Let fl
t be the feature vector used to compute ∆xl

t . At each step t of the cascade (see Fig. 2),
and for each landmark l, we add the visual features extracted from the backbone network, vl

t ,
with the relative positional features, rl

t , computed from the current shape, xt−1, to produce
the encoded features, fl

t = vl
t + rl

t .

2.3 Cascade Shape Regressor Using GATs

The step regressor architecture (Fig. 2) is composed of stacked GAT layers inspired by the
ones in the Attentional Graph Neural Net [22]. We consider the facial shape as a single
densely connected graph where nodes are the landmark locations, xt . To weigh the shared
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information across nodes, we compute a dynamic adjacency matrix per GAT layer s, As
t . We

learn these matrices as an attention from a given landmark to every other in the graph.
The input to the first GAT layer at step t are the encoded features, {fi

t}L
i=1. Let fi,s−1

t
be the features of the i-th landmark produced by the (s-1)-th GAT layer, that are also the
input to s-th layer (fi,0

t ≡ fi
t ). From now on, we drop the step-index t to simplify the notation.

The updated feature vector after the s-th layer is defined as fi,s = fi,s−1 +MLP([fi,s−1||mi,s])
where [·||·] is the concatenation operator, mi,s is the information aggregated, or message,
of the nodes neighboring i. Focusing on the message generation procedure, a query vector
hi,s

q , is assigned to landmark i and key h j,s
k , and value vectors h j,s

v , to every other landmark
j. The attention weight of landmark i to landmark j is the SoftMax over the key-query
similarities αi j = SoftMax j(hi,s

q ·h j,s
k ), being αi j the elements of the adjacency matrix As

t and
the transmitted message mi,s the weighted average of the value vectors: mi,s = ∑i ̸= j αi jh j,s

v ,
where hi,s

q = Ws
1fi,s+bs

1, h j,s
k = Ws

2f j,s+bs
2 and h j,s

v = Ws
3f j,s+bs

3. Matrices Wi and bias vectors
bi are learned.

Finally, the last GAT layer output fi,4
t is processed by a decoder, an MLP, to obtain the

corresponding displacement, ∆xi
t . We constraint the values in ∆xi

t , applying an ArcTan
activation and scaling the result, to be in the interval [−wt/2,wt/2]. In practice, this con-
straint makes the single-step regressor search problem simpler, boosting training conver-
gence. Given a trained MTN backbone, we train the cascade with the LCR =∑

K
t=1 L1smooth[x̃−

(xt−1 +∆xt)] loss, where x̃ are the ground truth landmark coordinates.

3 Experiments

To train and evaluate our method, we conduct different experiments in four complementary
datasets which have been acquired in-the-wild and bear different levels of difficulty:

300W [20] provides 68 manually annotated landmarks. We employ the 300W private
extension, which uses 3837 images as training set and adds 600 test images divided into
indoor and outdoor subgroups.

COFW-68 is a re-annotated version of COFW [1] with 68 landmarks. It is conceived
for testing landmark detectors with occlusions in a cross-dataset approach. The testing set in
COFW-68 is made of 507 images. The annotations include the landmark positions and the
visibility labels for the same 68 points as in 300W.

WFLW [31] is composed of challenging in-the-wild images and provides 98 manually
annotated landmarks. The dataset has 7500 training and 2500 testing faces. It is divided into
6 subgroups: pose, expression, illumination, make-up, occlusion and blur.

MERL-RAV [13] is a re-annotated version of 19,000 AFLW images with 68 landmarks,
like 300W. It provides 15,449 training and 3,865 test faces divided into 3 orientation subsets:
frontal, half-profile and profile. This recent dataset includes externally occluded visibility
and self-occluded labels.

3.1 Evaluation Metrics

In order to quantify the head pose estimation error, we use the Mean Absolute Error (MAE)

metric, MAE = 1
N

N
∑

i=1
|p̃i − pi|, where N is the number of testing images, p̃i is the ground

truth and pi represents a single predicted pose parameter.
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300W WFLW MERL-RAV
Angular error (◦)(↓) Angular error (◦)(↓) Angular error (◦)(↓)

Method yaw pitch roll mean yaw pitch roll mean yaw pitch roll mean
Yang [34] 4.2 5.1 2.4 3.9 - - - - - - - -
JFA [33] 2.5 3.0 2.6 2.7 - - - - - - - -
ASMNet [5] 1.62 1.80 1.24 1.55 2.97 2.93 2.21 2.70 - - - -
MNN [27] - - - 1.56 - - - 2.08 - - - -
SPIGA (Ours) 1.41 1.70 0.77 1.29 1.78 1.86 0.93 1.52 3.23 2.24 1.71 2.39

Table 1: Head pose MAE, in degrees, for 300W public, WFLW and MERL-RAV datasets.

Focusing on the landmark estimation task, Normalized Mean Error (NME) is the stan-

dard metric, NME = 100
N

N
∑

i=1

L
∑

l=1

||x̃i
l−xi

l ||2
di

. Where x̃i
l and xi

l denote, respectively, the ground-

truth and predicted coordinates of the i-th landmark and di is a normalization value which
varies depending on the dataset: inter-ocular (int-ocul), distance between outer eye corners;
inter-pupils, distance between pupil/eye centers; and box, computed as the geometric mean
of the landmarks ground truth bounding box (d =

√
wbbox ∗hbbox).

We also use Failure Rate (FR) and Area Under the Curve (AUC). FR evaluates the ro-
bustness of algorithms in terms of NME, indicating the percentage of images with an NME
above a given threshold. AUC is calculated by computing the area under the Cumulative
Error Distribution (CED) curve from 0 to the FR threshold. We introduce the Normalized
mean Percentile Error 90 (NPE90) which represents the NME for the image at the 90% of the
dataset, sorted by NME. This metric is particularly convenient for small data subsets where
the FR is not representative.

In all our tables results ranked first, second and third are shown respectively in blue,
green and red colors.

3.2 3D Pose Estimation Results
First, we evaluate the MTN performance in 3D pose estimation. In Table 1, we compare
our pose estimation in 300W and WFLW with previous works in the literature. Our model
shows a significant improvement. We reduce the mean MAE of the previous top performer,
MNN [27], by 17% and 27% respectively in 300W and WFLW. The main reason behind
this improvement is a better network architecture, stacked HGs vs. a single encoder-decoder
in [27] and the use of an attention mechanism. Having such a precise head pose estimation
is a critical factor in our proposal, since the cascade shape regressor initialization relies on
this prediction.

3.3 Landmark Detection Results
WFLW is the most popular benchmark to evaluate the performance of facial landmark detec-
tion. Recent methods that adopt this dataset use the bounding boxes provided by HRnet [29],
that were obtained from the ground truth landmark annotations. By doing so, they achieve
better performance (see Table 2, AWing results improve from 4.36 to 4.21 NME). In Table 2,
we clearly distinguish the bounding boxes used in the evaluation. Another important aspect
to perform a fair comparison is the use of additional training data. In our discussion we
do not consider methods that train with images or annotations other than those provided by
WFLW.
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Metric Method Testset Pose Expression Illumination Make-up Occlusion Blur
Bounding boxes from WFLW benchmark

NMEint−ocul (%)(↓)

3DDE [26] 4.68 8.62 5.21 4.65 4.60 5.77 5.41
DeCaFA [3] 4.62 8.11 4.65 4.41 4.63 5.74 5.38

AVS+SAN [19] 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWing [30] 4.36 7.38 4.58 4.32 4.27 5.19 4.96

Bounding boxes from GT landmarks
GlomFace [37] 4.81 8.17 - - - 5.14 -

LUVLI [13] 4.37 7.56 4.77 4.30 4.33 5.29 4.94
SDFL [17] 4.35 7.42 4.63 4.29 4.22 5.19 5.08
AWing [30] 4.21 7.21 4.46 4.23 4.02 4.99 4.82
SLD [16] 4.21 7.36 4.49 4.12 4.05 4.98 4.82

HIHc1 [14] 4.18 7.20 4.19 4.45 3.97 5.00 4.81
ADNet [10] 4.14 6.96 4.38 4.09 4.05 5.06 4.79

DTLD-s [15] 4.14 - - - - - -
SPLT [32] 4.14 6.96 4.45 4.05 4.00 5.06 4.79

SPIGA (Ours) 4.06 7.14 4.46 4.00 3.81 4.95 4.65

FR10 (%)(↓)

GlomFace [37] 3.77 17.48 - - - 6.73 -
DTLD-s [15] 3.44 - - - - - -
LUVLI [13] 3.12 15.95 3.18 2.15 3.40 6.39 3.23
SDFL [17] 2.72 12.88 1.59 2.58 2.43 5.71 3.62
AWing [30] 2.04 9.20 1.27 2.01 0.97 4.21 2.72
SLD [16] 3.04 15.95 2.86 2.72 1.46 5.29 4.01

HIHc1 [14] 2.96 15.03 1.59 2.58 1.46 6.11 3.49
ADNet [10] 2.72 12.72 2.15 2.44 1.94 5.79 3.54
SPLT [32] 2.76 12.27 2.23 1.86 3.40 5.98 3.88

SPIGA (ours) 2.08 11.66 2.23 1.58 1.46 4.48 2.20

AUC10 (%)(↑)

AWing [30] 58.95 33.37 57.18 59.58 60.17 52.75 53.93
SLD [16] 58.93 31.50 56.63 59.53 60.38 52.35 53.29

HIHc1 [14] 59.70 34.20 59.00 60.60 60.40 52.70 54.90
ADNet [10] 60.22 34.41 52.34 58.05 60.07 52.95 54.80
SPLT [32] 59.50 34.80 57.40 60.10 60.50 51.50 53.50

SPIGA (Ours) 60.56 35.31 57.97 61.31 62.24 53.31 55.31

Table 2: Evaluation of landmark detection on WFLW.

In Table 2, we show that our model outperforms current state-of-the-art (SOTA) in most
of the WFLW subsets, as well as in the full set metrics. When it is compared with other
GraphNets-based methods, our approach is 4% and 32% better in terms of NME and FR
than SLD [16], and 7% and 23% better than SDFL [17]. These results show that our rela-
tive positional encoding and the per layer graph attention mechanism have a strong impact
on the performance of GraphNets. Further, our proposal is also more accurate than recent
approaches based on transformers, when these models are trained only with WFLW data,
DTLD-s [15] and SPLT [32], both with 4.14 NME in the full set. If we analyze the per-
formance on some of the subsets, our method is 35%, 25%, 23% and 39% better than the
previous SOTA, ADNet [10], in the illumination, make-up, occlusion and blur subsets. This
proves the importance of learning a global representation of the facial structure, that CNNs
alone do not provide. Additionally, the low FR across the different subsets and better AUC
values reaffirm that our model achieves a balanced trade-off between robustness and preci-
sion, taking advantage of the complementary benefits from the CNN and GAT architectures.

On the other hand, results of subsets where our approach is not competitive also bear
some relevant insights. First, further research is needed in the expression subset, where our
performance is not as good as the rest. This is due to the fact that the 3D facial model used to
initialize the cascade is rigid (see Fig. 3). Second, seemingly, in the pose subset, we are not
the top performers. However, as we can see in Fig. 3, faces with extreme poses are not well
annotated and self-occlusions are not marked. So, the evaluation on this subset of WFLW is

1Use RetinaFace detections.
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Figure 3: WFLW results on expressions (first 2 cols.) and pose examples (last 4 cols.).
Shown in blue the ground truth and in green estimated landmarks.

NMEbox(%)(↓) AUC7
box(%)(↑)

Method All Frontal Half-Prof. Profile All Frontal Half-Prof. Profile
DU-Net 1.99 1.89 2.50 1.92 71.80 73.25 64.78 72.79

LUVLI [13] 1.61 1.74 1.79 1.25 77.08 75.33 74.69 82.10
SPIGA (Ours) 1.51 1.62 1.68 1.19 78.47 76.96 75.64 83.00

Table 3: Evaluation of landmark detection on MERL-RAV.

questionable.
MERL-RAV is one of the newest datasets, created to evaluate 2D facial alignment in-

the-wild. It improves landmark annotations at half-profile and profile images by labeling the
self-occlusion of landmarks. Hence, this dataset allows to correctly measure the performance
of landmark detectors on samples with extreme poses. As we can see in Table 3, in terms of
NMEbox, our model is 6% better than LUVLI’s [13] baseline, performing the best in all pose
subsets.

Finally, to verify the generalization and performance against occlusions, we conduct a
cross-dataset experiment training with the 300W public split and testing with COFW-68 and
300W private. Results are summarized in Table 4. They prove the importance of the graph
attention mechanism, which dynamically weighs landmark relationships according to the
local image appearance and relative position, versus a learned static relationship approach,
such as SLD [16], (NMEint−ocul of 3.93 vs 4.22 in COFW-68). Further, SPIGA trained on
the 300W public dataset beats LUVLI [13] (NMEbox of 2.52 vs 2.75 in COFW-68) with a
backbone that has half the number of HG modules. It also obtains comparable results to a
recent transformer-based method trained from scratch, DTLD-s [15]. It is marginally better
than DTLD-s in 300W private and worse in COFW-68. These results prove that a general
architecture using GATs can complement and enhance CNN-based models, reaching better
results in situations where ambiguity or noise is contaminating the local landmark appear-
ance, where preserving structural landmarks consistency contributes to the final solution.

3.4 Ablation Study
We conduct our ablation study on WFLW to understand how SPIGA components impact
specific subset metrics. Table 5 shows that the addition of the cascade shape regressor out-
performs the bare MTN backbone (using SoftArgMax). Our new relative positional en-
coding is better than stacking the vector ql

t with the visual features, and much better than

2Result comes from a personal communication with authors of [37], 2.09 mistakenly in the paper.

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Li, Lu, Zheng, Liao, Lin, Luo, Cheng, Xiao, Lu, Kuo, and Miao} 2020

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Li, Guo, Rhee, Han, and Han} 2022

Citation
Citation
{Zhu, Wan, Xie, Li, and Gu} 2022



PRADOS, BUENAPOSADA, BAUMELA: SHAPE PRESERVING FACIAL LANDMARKS 9

NMEbox (%)(↓) AUC7
box (%)(↑) NMEint−ocul (%)(↓)

300W priv. COFW-68 300W priv. COFW-68 COFW-68
HRNetV2-W18 [29] - - - - 5.06
HG×1+SAAT [36] - - - - 4.61
LUVLI(8) [13] 2.24 2.75 68.3 60.8 -
GlomFace [37] - 2.69 2 - - 4.21
SLD [16] - - - - 4.22
SDFL [17] - - - - 4.18
SPLT [32] - - - - 4.10
DTLD-s [15] 2.05 2.47 70.9 65.0 -
SPIGA(4) (ours) 2.03 2.52 71.0 64.1 3.93

Table 4: Landmark detection results on 300W private and COFW-68. In (·) we show the
number of HG modules.

Figure 4: Left pupil attention mechanism at first and last layer, respectively, of the first
regressor step.

using no positional information. The estimation of an attention per layer with the GAT im-
proves with respect to use of a common attention matrix (GCN). An extended view of the
effect of the learned adjacency matrix is shown in Fig. 4. Occlusion images show how the at-
tention mechanism relies on visible landmarks regardless of the layer. The regressor "looks"
at distant and unoccluded landmarks at the first GAT layer and then at closer ones in the last
layers. The contribution of the proposed coarse-to-fine scheme w.r.t. a constant size window
(w = 8) or a single pixel window (w = 1) is also clear in Table 5. The improvement provided
by SPIGA can be seen across all metrics. However, it is more prominent with the hard cases,
as demonstrated by the results for the subsets Makeup, Occlusion, and Blur, and the NPE90
of the full set.

In each row of Table 6, we display respectively the performance of three SPIGA models
configured with one, two and three steps cascade. In each column, we show the NME ob-
tained at each step. The final NME is reduced gradually as we increase the number of steps.
Further, shorter cascades tend to have a better NME at the first step (4.17 vs 4.22). However,
given also the larger FR they achieve (2.60 vs 2.44), we can conclude that longer cascades
focus their first steps on improving their robustness.

Changed from SPIGA model: Full Make-up Occlusion Blur
Changed From → To NME NPE90 NME NPE90 NME NPE90 NME NPE90

Shape model SPIGA → MTN backbone 4.13 6.93 4.06 7.43 5.10 8.58 4.81 7.70

Positional encoding SPIGA → w/o pos. encod. 4.17 7.07 4.01 6.71 5.03 8.33 4.72 7.52
SPIGA → stacking 4.09 6.87 3.83 6.47 4.97 8.15 4.68 7.37

Attention GAT → GCN 4.08 6.79 3.84 6.54 4.98 8.05 4.68 7.37

Coarse-to-Fine w = 16,8,4 → w = 1,1,1 4.12 6.95 3.88 6.76 4.99 8.19 4.71 7.44
w = 16,8,4 → w = 8,8,8 4.08 6.84 3.82 6.53 4.98 8.13 4.67 7.43

- Best SPIGA model 4.06 6.76 3.81 6.32 4.95 8.09 4.65 7.31

Table 5: Contribution of the SPIGA components to the NMEint−ocul(↓) and NPE90(↓) in
WFLW.
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Step 1 Step 2 Step 3
Method NMEint−ocul AUC10 FR10 NMEint−ocul AUC10 FR10 NMEint−ocul AUC10 FR10

(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)
SPIGA(1) 4.17 59.53 2.60 - - - - - -
SPIGA(2) 4.17 59.55 2.44 4.07 60.45 2.20 - - -
SPIGA(3) 4.22 59.10 2.44 4.08 60.41 2.12 4.06 60.56 2.08

Table 6: SPIGA results for cascades with different number of steps, shown in ().

Figure 5: Estimated landmark locations: from 2D projection of the rigid 3D model (left) to
the final result after the 3 regressor steps (right).

In Fig. 5 we show the initialization and the landmark locations estimated at each step of
the regressor cascade. When the face displays a neutral expression (top row), the initializa-
tion is reasonably good and the model converges to a solution within one regression step.
Since SPIGA initializes landmarks with a 3D model featuring a neutral expression, when the
face displays any other configuration, the initialization is much worse (lower row). However,
even in this situation, the model is able to estimate the correct landmark locations in three
regression steps.

4 Conclusions
We presented SPIGA, a face landmark regressor that combines a CNN with a cascade of
Graph Attention Networks (GATs). The CNN provides the local appearance representation.
The GAT regressor is endowed with a positional encoding and attention mechanism that
learn the geometrical relationship among landmarks and encourage the model to produce
plausible face shapes. It establishes a new SOTA in the WLFW, COFW-68 and MERL-RAV
datasets. In our experimentation we verify that the positional encoding is the component that
contributes most to the final result and the first steps of the cascade focus on improving the
robustness. In addition, at each step, the regressor "looks" at distant and reliable landmarks
in the first GAT layer and progressively focuses its attention on closer landmarks in the
following ones. These insights from our ablation analysis confirm that SPIGA is learning a
global representation and explains why its improvement is most significative in challenging
situations involving occlusions, heavy make-up, blur and extreme illumination.
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