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Abstract Method

Facial landmarks estimation is a crucial step for many face analysis
problems such as facial expression recognition, face reenactment, etc.

Relative Positional Encoding:
Combining visual and geometrical information Is crucial to maintain the
shape of the face when local appearance alone Is not sufficient.

Problem: CNN architectures have difficulties to learn simple spatial
relationships. In our case, the global representation of the structure of a
face.
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Therefore, an effective way of representing the local appearance of each
landmark and its geometric relationship to the other landmarks is needed. Relative landmark distances explicitly represent the facial shape, providing

enhanced geometrical features compared to their absolute locations.
Key contributions: We present SPIGA, a robust method which takes

advantage of the complementary benefits from CNN and GNN
architectures.

Graph Attention Networks:
 We consider the facial shape as a stable and fully-connected weighted

graph where nodes are landmarks.
A GAT cascade with an attention mechanism to weigh the information

provided by each landmark according to its reliability.

* A positional encoding to jointly represent relative landmark locations and
local appearance.

« A multi-task CNN approach to initialize the location of graph nodes.

* A coarse-to-fine landmark description scheme.
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Angular error (°)(]) Angular error (°)(]) 256 \_ /
Method yaw pitch roll | mean | yaw pitch roll [ mean
ASMNet 1.62 180 124 1.55 [ 297 293 221 2.70  The attention mechanism initially attends to a wide range of landmarks
MNN - - - 1.56 - - - 2.08 (GAT1) and gradually focus on specific ones (GAT4).
SPIGA (Ours) | 141 1.70 0.77 ] 1.29 (1.78 186 0.93 | 1.52 —
Landmark estimation results: § GAT1 GAT 4
Method Full Pose Expr. Illum. Make-up Occl. Blur Attention
WLEW NMEim—ocul (%)(\L)
SLD 421 7.36 449 412 4.05 498 4.82 * QOcclusion images show how the attention mechanism relies on visible
ADNet 414 696 438 4.09 4.05 5.06 4.79 landmarks.
SPLT 414 696 445 4.05 4.00 5.06 4.79 _ o
SPIGA (Ours) | .06 7.14 _4.46 _ 4.00 381 195  4.65 C_oarse-to-flne Caspaded Regressc_)r: Constra_ln_lng the output step
displacement to the visual cropped region boost training convergence.
WFLW FRy (%)(])
SLD 304 1595 286 272 146 529 401 ¢ /4\%* e V= @l e o
ADNet  [272 1272 215 244 194 579 354 \ / ’ Q L) / Q gl
SPLT 276 1227 223  1.86 340 598 3.88 o e . &
SPIGA (ours) | 2.08 11.66 2.23 1.58 1.46 448 2.20
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Qualitative results
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