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1 Implementation Details

In this section, we present a complete overview of SPIGA’s implementation. Including an
extended study of the CNN multi-stage backbone configuration used to provide the initial-
ization of the 2D landmark location and the visual feature representation (F) for our GAT
regressor (see Fig. 1).

Figure 1: SPIGA workflow. Given as inputs an image and the facial 3D model, the CNN
(MTN) infers the pose parameters, p, and the visual feature representation, F. Iteratively,
the cascaded GAT regressor refines the initial 2D landmark projection provided by the 3D
model, combining visual and structural information.

During training, we perform random data augmentation to the input images using the
following transformations: rotation ±45◦, scaling 60±15% of the bounding box size, trans-
lation 5% of the bounding box size, horizontal flip 50%, blur 50%, HSV color jittering
and synthetic rectangular occlusions. Input face images are finally cropped and resized to
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256× 256 pixels. Similarly, 64x64 output heatmaps are generated following Awing [21]
recommendations.

1.1 CNN Multitask Backbone
Our backbone (MTN) consists of a cascade of M = 4 Hourglass stages (HG) with an At-
tention Module, similar to the one used by [6]. First, a residual encoder reduces the size
of the input image from 256×256 to 64×64 pixels before entering the HG cascade. Each
HG reduces the spatial extent of the feature maps to a resolution of 8×8 at the bottleneck.
Following [19], we add an encoder to each HG bottleneck to extract a 3D pose estimation
head, as shown in Fig. 2.

Figure 2: CNN Multitask backbone (MTL) architecture used during the fine-tuning with
landmarks and pose estimation tasks.

We first pre-train the backbone in the landmark detection task (without the pose encoders)
using the Adam optimizer during 450 epochs with an initial learning rate of 10−3 and a step
decay of 0.1 at epoch 380. During training, the batch size is set to 24 and the Automatic
Mixed Precision (AMP) from Pytorch is used. In Equation 1, we show the loss function
computed for the landmark detection task. We aggregate the losses of each HG module,
represented by index h, doubling the loss weight of a module compared to the previous one.

Llnd =
M

∑
h=1

2h−1(λcLh
coord +λatt(Lh

points +Lh
edges)), (1)

Where λcoord and λatt are empirically set to 4 and 50, respectively. Lcoord is a smooth L1
function computed between the annotated and predicted landmarks coordinates. Lpoints and
Ledges are Awing losses [21] applied to the point and edges heatmaps, respectively.
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Once the model has been pre-trained with landmarks, it is fine-tuned with both tasks,
pose and landmarks. Sharing the same hyperparameter configuration as in the previous pre-
training stage during 150 epochs, with a step decay from 10−3 to 10−4 at epoch 100. In
Equation 2, we show the final loss, where λp is empirically set to 1 and Lpose is the L2 loss
computed for the pose estimation. Once the model is trained, we freeze the backbone to train
the GAT regressor.

Ltotal = Llnd +
M

∑
h=1

2h−1(λpLh
pose) (2)

1.2 Cascaded Regressor Based on GATs
The full cascaded regressor is shown in Fig. 3 and the architecture of a single-step regressor
is shown in Fig. 4. Similar to previous training configurations, the full shape regressor uses
the Adam optimizer, setting an initial learning rate of 10−4 with a step decay of 0.1 at epoch
100.

Figure 3: SPIGA cascaded regressor with the 3 steps used in the paper.

Figure 4: SPIGA step regressor with the 4 GATs layers used in the paper.

The detailed extraction of visual and geometric features can be visualized in Fig. 5.
Including the encoding and combination applied to get the input features of the regressor.
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Let F be the last feature map of the last stacked HG module in the MTN. We first look at
a square window, Wt , of size wt ×wt and centered at each landmark location, xl

t−1 in F. We
use a fixed affine transform with the grid generator and sampler of the Spatial Transformer
Networks [7] to have a differentiable crop operation of Wt . The crop operation re-samples
Wt to a fixed size 7× 7× 256 tensor, regardless of the dimension of the wt ×wt window.
Then, using a convolution with a 7×7 kernel, a 1×1×256 feature map is extracted. Finally,
with a 1× 1 convolution, we compute the 512 channels of the visual features vector, vl

t ,
corresponding to l-th landmark at step t. For each landmark l, we combine the visual features
extracted from the backbone network, vl

t , and the relative positional features, rl
t , computed

from xt−1 (i.e. the current shape) into the encoded features, fl
t = vl

t + rl
t .

Figure 5: SPIGA extraction of visual and geometric features. Including the encoding and
combination applied to get the input features of the regressor.

2 Extended Experimentation

In this section, we report an extended study of our proposal by adding new results on 300W
(public and private) and WFLW datasets. In all our tables, results ranked first, second and
third are shown respectively in blue, green and red colors.

300W public. In Table 1, we present the comparison of state-of-the-art (SOTA) results
in the 300W public. In this dataset, our approach achieves results comparable to the top per-
formers in the literature: ADNet [6] and SLD[13]. Since most images in this data set are fully
visible semi-frontal faces, CNN-based methods already have a highly accurate performance
(e.g. Wing). Our method is better than the other two methods using Graph Neural Net-
works (GraphNets), SDFL[14] and SLD[13], although results are comparable with SLD[13]
(NMEint−ocul of 2.99 vs 3.04). ADNet [6], using a stacked encoder-decoder model is the
SOTA and our method obtains a comparable result (NMEint−ocul of 2.93 vs 2.99).

300W private. Table 2 shows an extended SOTA comparison in terms of NMEint−ocul
on 300W private dataset.

WFLW. In Table 5 we present an extended SOTA comparison on WLFW.
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Method NMEint−ocul (%)(↓) NMEint−pupil (%)(↓)
Common Challeng. Full Common Challeng. Full

mnv2 [4] 3.93 7.52 4.70 - - -
SAN [3] 3.34 6.60 3.98 - - -
DAN [8] 3.19 5.24 3.59 4.42 7.57 5.03
TSR [15] - - - 4.36 7.56 4.99
RAR [25] - - - 4.12 8.35 4.94
LAB (4-stack) [23] 2.98 5.19 3.49 4.20 7.41 4.92
FTYM [22] 3.09 4.86 - - - -
DeCaFA [2] 2.93 5.26 3.39 - - -
SHN [26] - 4.90 - 4.12 7.00 4.68
HIHc* [11] 2.95 5.04 3.36 - - -
HRNetV2-W18 [20] 2.87 5.15 3.32 - - -
HG×2+SAAT [27] 2.87 5.03 3.29 - - -
DCFE [17] 2.76 5.22 3.24 3.83 7.54 4.55
AVS [16] - - - 3.98 7.21 4.54
PCD-CNN [10] - - - 3.67 7.62 4.44
SDFL [14] 2.88 4.93 3.28 - - -
LUVLI [9] 2.76 5.16 3.23 - - -
SPLT [24] 2.75 4.90 3.17 - - -
3DDE [18] 2.69 4.92 3.13 3.73 7.10 4.39
GlomFace [28] 2.72 4.79 3.13 - - -
AWing [21] 2.72 4.52 3.07 3.77 6.52 4.31
SLD [13] 2.62 4.77 3.04 - - -
DTLD-s [12] 2.67 4.56 3.04 - - -
ADNet [6] 2.53 4.58 2.93 3.51 6.47 4.08
Wing [5] - - - 3.27 7.18 4.04
SPIGA (Ours) 2.59 4.66 2.99 3.59 6.73 4.20

Table 1: Comparison against state-of-the-art on 300W public dataset.

Method
Indoor Outdoor Full

NMEinter−ocul AUC8 FR8 NMEinter−ocul AUC8 FR8 NMEinter−ocul AUC8 FR8
(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)

DAN [8] - - - - - - 4.30 47.00 2.67
SHN [26] 4.10 - - 4.00 - - 4.05 - -
DCFE [17] 3.96 52.28 2.33 3.81 52.56 1.33 3.88 52.42 1.83
3DDE [18] 3.74 53.93 2.00 3.71 53.95 2.66 3.73 53.94 2.33
SPIGA (Ours) 3.43 57.35 1.00 3.43 57.17 0.33 3.43 57.27 0.67

Table 2: Results on 300W private test set. Face alignment methods are exclusively trained
on 300W public dataset.

3 Extended Ablation study

In this section we show more examples of the learned adjacency matrix per GAT module in
the first cascade step (i.e. the attention of each landmark to others within the face graph).
In Fig. 6 and Fig. 7 we show the estimated landmark locations (green dots) by SPIGA. On
top of landmarks locations, we show as edges the attention estimated in the first cascade
regressor step for two landmarks: one from the eye pupil (see Fig. 6) and one from the jaw
(see Fig. 7). From left to right, we show the attention estimated in GAT 1 to 4.

When we have no occlusions (see the first row in Fig. 6) to estimate the pupil features,
GAT 1 looks mainly at the other eye landmarks. Then, GATs progressively pay more at-
tention to closer landmarks and also to the other pupil. To compute the pupil displacement,
GAT 4 only attends the landmarks over the same eye. Interestingly, when we have the other
eye occluded (see second and third rows in Fig. 6) GAT 1 does not pay only attention to the
other eye landmarks, but it looks mainly to landmarks over the nose. Finally, when we have
heavy occlusions (see the last row in Fig. 6), the attention is given first to not occluded parts
(i.e. nose and the other eye in GAT 1) and to landmarks over the same eye in GAT 4.
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Metric Method Testset Pose Expression Illumination Make-up Occlusion Blur
Bounding boxes from WFLW benchmark

NMEic (%)(↓)

mnv2 [4] 9.57 18.18 9.93 8.98 9.92 11.38 10.79
LAB [23] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
SAN [3] 5.22 10.30 5.71 5.19 5.49 6.83 5.80
Wing [5] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

3DDE [18] 4.68 8.62 5.21 4.65 4.60 5.77 5.41
DeCaFA [2] 4.62 8.11 4.65 4.41 4.63 5.74 5.38

AVS+SAN [16] 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWing [21] 4.36 7.38 4.58 4.32 4.27 5.19 4.96

Bounding boxes from GT landmarks
GlomFace [28] 4.81 8.17 - - - 5.14 -

HRNetV2-W18 [20] 4.60 7.94 4.85 4.55 4.29 5.44 5.42
LUVLI [9] 4.37 7.56 4.77 4.30 4.33 5.29 4.94
SDFL [1] 4.35 7.42 4.63 4.29 4.22 5.19 5.08

AWing [21] 4.21 7.21 4.46 4.23 4.02 4.99 4.82
SLD [13] 4.21 7.36 4.49 4.12 4.05 4.98 4.82
HIHc [11] 4.18 7.20 4.19 4.45 3.97 5.00 4.81
ADNet [6] 4.14 6.96 4.38 4.09 4.05 5.06 4.79

DTLD-s [12] 4.14 - - - - - -
SPLT [24] 4.14 6.96 4.45 4.05 4.00 5.06 4.79

SPIGA (Ours) 4.06 7.14 4.46 4.00 3.81 4.95 4.65

FR10 (%)(↓)

HRNetV2-W18 [20] 4.64 23.01 3.50 4.72 2.43 8.29 6.34
GlomFace [28] 3.77 17.48 - - - 6.73 -
DTLD-s [12] 3.44 - - - - - -
LUVLI [9] 3.12 15.95 3.18 2.15 3.40 6.39 3.23
SDFL [1] 2.72 12.88 1.59 2.58 2.43 5.71 3.62

AWing [21] 2.04 9.20 1.27 2.01 0.97 4.21 2.72
SLD [13] 3.04 15.95 2.86 2.72 1.46 5.29 4.01
HIHc [11] 2.96 15.03 1.59 2.58 1.46 6.11 3.49
ADNet [6] 2.72 12.72 2.15 2.44 1.94 5.79 3.54
SPLT [24] 2.76 12.27 2.23 1.86 3.40 5.98 3.88

SPIGA (ours) 2.08 11.66 2.23 1.58 1.46 4.48 2.20

AUC10 (%)(↑)

HRNetV2-W18 [20] 52.37 25.06 51.02 53.26 54.45 45.85 45.15
LUVLI [9] 57.70 31.00 54.90 58.40 58.80 50.50 52.50
SDFL [1] 57.59 31.32 55.01 58.47 58.31 50.35 51.47

AWing [21] 58.95 33.37 57.18 59.58 60.17 52.75 53.93
SLD [13] 58.93 31.50 56.63 59.53 60.38 52.35 53.29

HIHc1 [11] 59.70 34.20 59.00 60.60 60.40 52.70 54.90
ADNet [6] 60.22 34.41 52.34 58.05 60.07 52.95 54.80
SPLT [24] 59.50 34.80 57.40 60.10 60.50 51.50 53.50

SPIGA (Ours) 60.56 35.31 57.97 61.31 62.24 53.31 55.31

Table 3: Extended evaluation of landmark detection on WFLW.
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Figure 6: Attention from left eye pupil to other landmarks shown as edges. From left to
right, attention at GAT layer 1, GAT layer 2, GAT layer 3 and GAT layer 4. The greener the
higher is the attention. We only show edges with an attention over a threshold for clarity.
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Figure 7: Attention from a landmark over the jaw to other landmarks shown as edges. From
left to right, attention at GAT layer 1, GAT layer 2, GAT layer 3 and GAT layer 4. The
greener the higher is the attention. We only show edges with an attention over a threshold
for clarity.

Now we study the estimated attention of a jaw landmark (see Fig. 7). Without occlusions
(first row in Fig. 7), the jaw landmark is paying attention to the mouth and other distant jaw
landmarks in GAT 1. Progressively, the attention is concentrated on closer jaw landmarks.
When we have heavy occlusions, the attention is given first to non-occluded landmarks in
GAT 1. This allows the first graph convolution to compute features that use non-occluded
landmarks. Then, the other GATs can use closer landmarks given that the starting features
were free of occlusions.

We can conclude that the estimated attention allows us to extract occlusion-free features
in the first GAT module. Then, the next GAT modules can use features from closer landmarks
given the initial ones are correct.
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4 Challenging examples

Figure 8: WFLW Challenging examples. In blue we show the ground truth and in green the
landmark locations estimated by SPIGA.
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