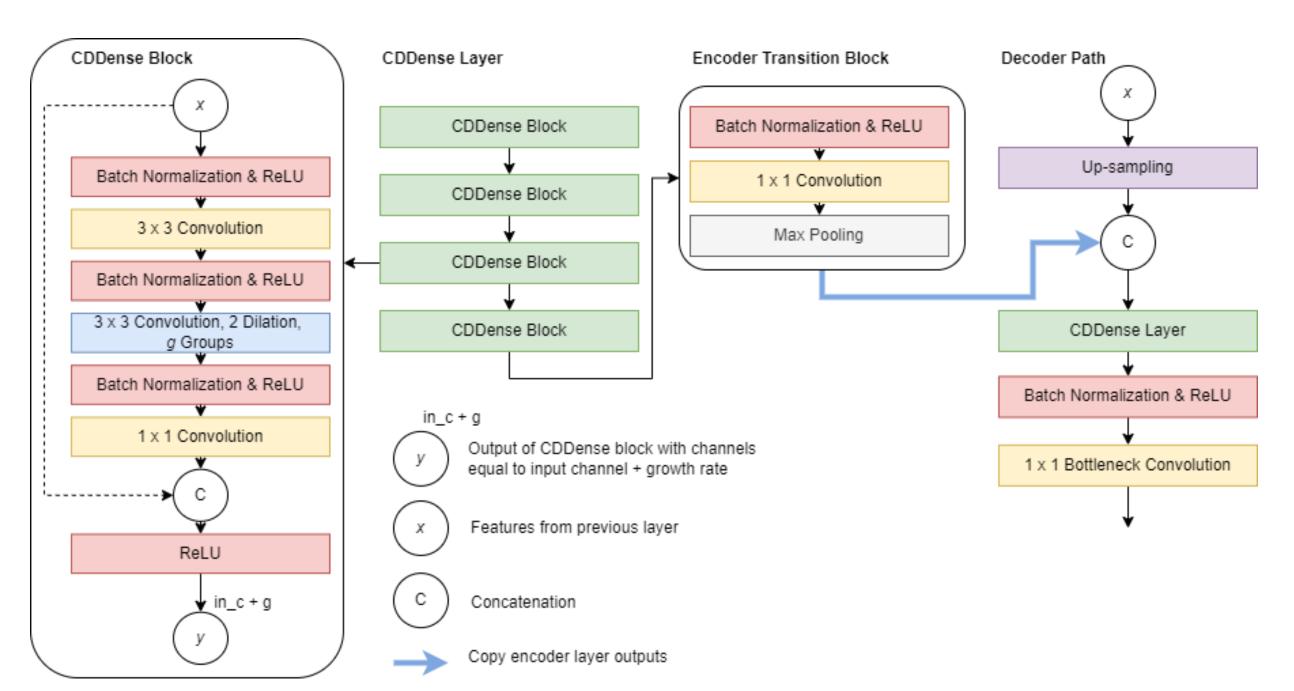


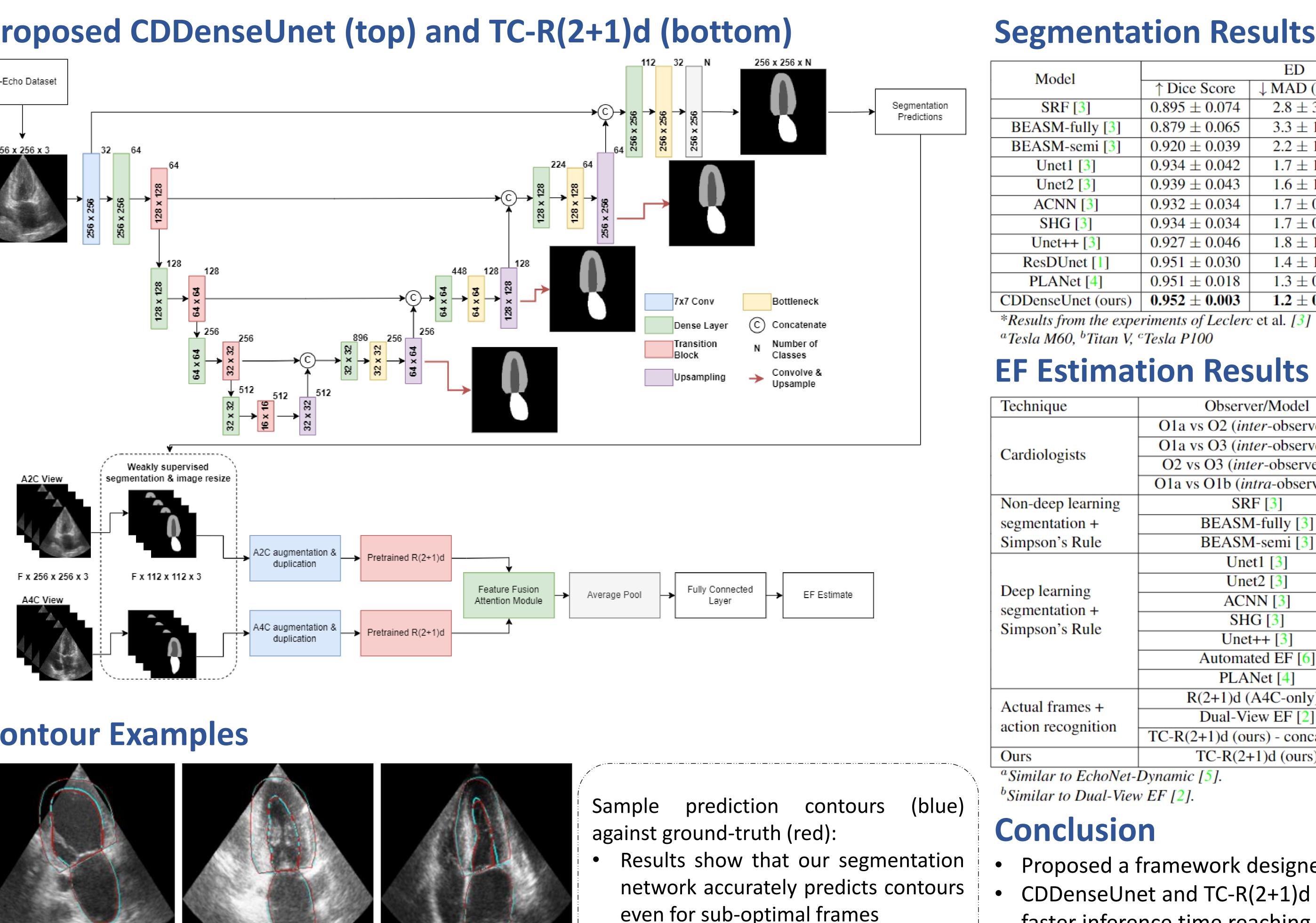
TWO-VIEW LEFT VENTRICULAR SEGMENTATION AND EJECTION FRACTION ESTIMATION IN 2D ECHOCARDIOGRAMS Frank Cally Tabuco¹, Jose Donato Magno², Nathaniel Orillaza Jr³, Rani Ailyna Domingo⁴, Prospero Naval Jr.¹ ¹Department of Computer Science, UPD; ²Division of Cardiovascular Medicine, Department of Medicine, UPM-PGH;

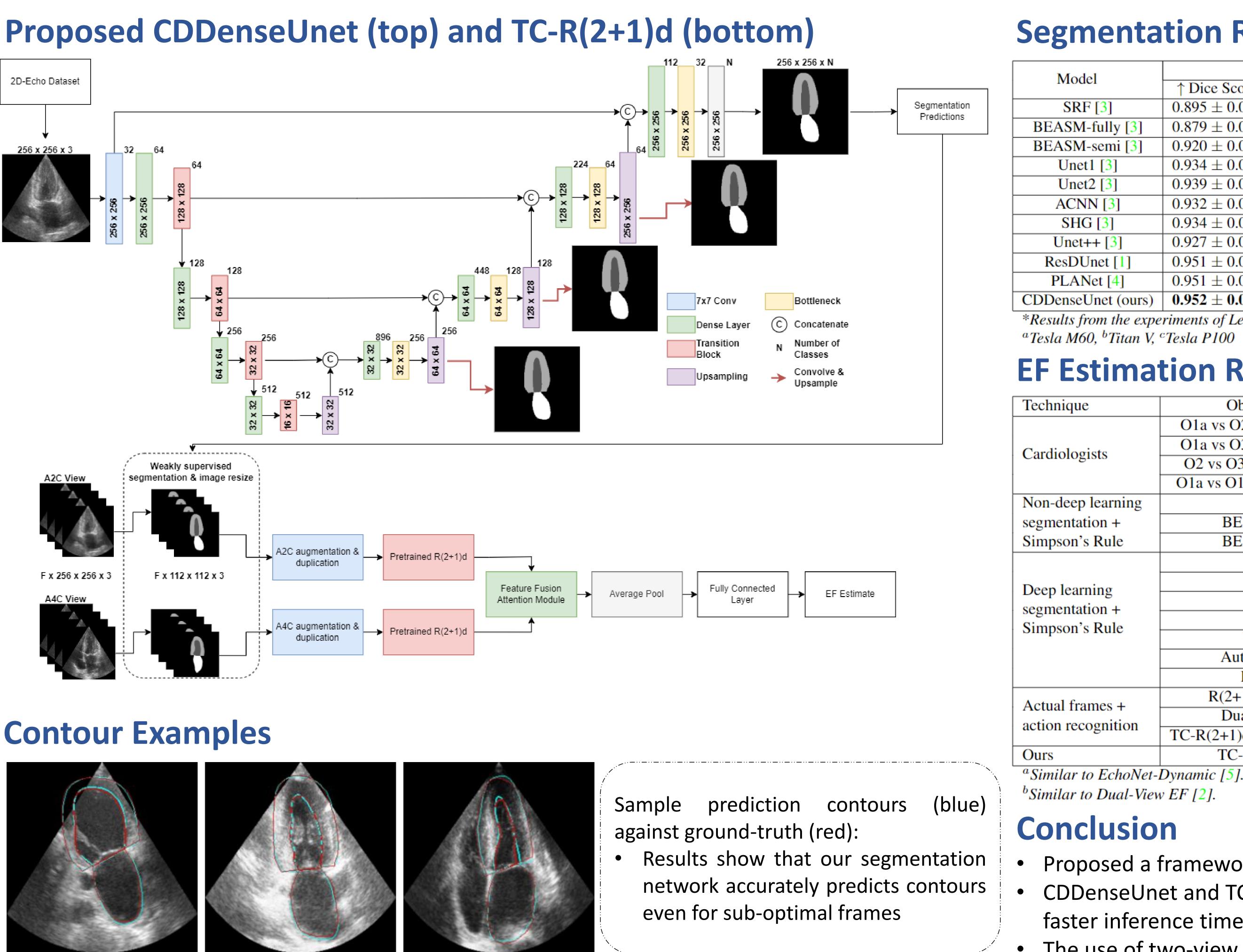
Challenges in Echocardiography


(a)

- Current methods for analysis are labor-intensive, timeconsuming, and require high-level of skills.
- Frames are often low-quality and low-contrast.
- Estimation of ejection fraction (EF) suffers from high inter-observer variability.

Contributions


- Developed a fast and accurate segmentation model.
- Developed a multi-view EF estimation model.
- Evaluated that segmentation is necessary for EF estimation in noisy and low-quality frames.
- First full-deep learning approach to achieve state-ofthe-art (SOTA) performance against Modified Simpson's Rule.


Schematic of Segmentation Model

³College of Medicine, UPM; ⁴UPM-PGH

2D-Echo Dataset

REFERENCES:

[1] Alyaa Amer, Xujiong Ye, and Faraz Janan. Resdunet: A deep learning-based left ventricle segmentation method for echocardiography. IEEE Access, 9:159755–159763, 2021. [2] Delaram Behnami, Zhibin Liao, Hany Younan Azer Girgis, Christina Luong, Robert Rohling, Kenneth Gin, Teresa Tsang, and Purang Abolmaesumi. Dual-View Joint Estimation of Left Ventricular Ejection Fraction with Uncertainty Modelling in Echocardiograms, pages 696–704. 10 2019. [3] Sarah Leclerc, Erik Smistad, Joao Pedrosa, Andreas Ostvik, Frederic Cervenansky, Florian Espinosa, Torvald Espeland, Erik Berg, Pierre-Marc Jodoin, T. Grenier, Carole Lartizien, Jan Drhooge, Lasse Løvstakken, and Olivier Bernard. Deep learning for segmentation using an open large-scale dataset in 2d echocardiography. IEEE Transactions on Medical Imaging, PP:1–1, 02 2019.

[4] Fei Liu, Kun Wang, Dan Liu, Xin Yang, and Jie Tian. Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography. Medical Image Analysis, 67:101873, 01 2021 [5] David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph Ebinger, Curtis Langlotz, Paul Heidenreich, Robert Harrington, David Liang, Euan Ashley, and James Zou. Video-based ai for beat-to-beat assessment of cardiac function. Nature, 580, 04 2020. [6] Erik Smistad, Olivier Bernard, Bjørnar Grenne, Lasse Løvstakken, Andreas Ostvik, Ivar Salte, Daniela Melichova, Thuy Mi Nguyen, Kristina Haugaa, Harald Brunvand, Thor Edvardsen, and Sarah Leclerc. Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, PP:1–1, 03 2020.

Segmentation Results (Endocardium)

				ES		
	ED			Inference		
ore	\downarrow MAD (mm)	\downarrow HD (mm)	↑ Dice Score	\downarrow MAD (mm)	\downarrow HD (mm)	Time (s)
074	2.8 ± 3.6	11.2 ± 10.2	0.848 ± 0.137	3.6 ± 7.8	11.6 ± 13.6	-
065	3.3 ± 1.8	9.2 ± 4.9	0.826 ± 0.137	3.8 ± 2.1	9.9 ± 5.1	-
039	2.2 ± 1.2	6.0 ± 2.4	0.861 ± 0.070	3.1 ± 1.6	7.7 ± 3.2	-
042	1.7 ± 1.0	5.5 ± 2.9	0.905 ± 0.063	1.8 ± 1.3	5.7 ± 3.7	0.090^{a}
043	1.6 ± 1.3	5.3 ± 3.6	0.916 ± 0.061	1.6 ± 1.6	5.5 ± 3.8	0.140^{a}
034	1.7 ± 0.9	5.8 ± 3.1	0.903 ± 0.059	1.9 ± 1.1	6.0 ± 3.9	-
034	1.7 ± 0.9	5.6 ± 2.8	0.906 ± 0.057	1.8 ± 1.1	5.8 ± 3.8	-
046	1.8 ± 1.1	6.5 ± 3.9	0.904 ± 0.060	1.8 ± 1.0	6.3 ± 4.2	-
030	1.4 ± 1.2	4.5 ± 1.2	-	-	-	-
018	1.3 ± 0.5	$\textbf{4.2} \pm \textbf{1.4}$	0.931 ± 0.032	1.4 ± 0.6	$\textbf{4.3} \pm \textbf{1.5}$	0.016^{b}
003	1.2 ± 0.1	4.4 ± 0.3	$\textbf{0.931} \pm \textbf{0.003}$	1.2 ± 0.1	4.4 ± 0.4	0.015 ^c

bserver/Model	↑ Correlation	bias $\pm \sigma$	↓ MAE (%)	\downarrow RMSE (%)	$\uparrow R^2$
2 (<i>inter</i> -observer) [3]	0.801	-9.1 ± 8.1	10.0	-	-
3 (<i>inter</i> -observer) [3]	0.646	-12.6 ± 10.0	13.4	-	-
3 (<i>inter</i> -observer) [3]	0.569	3.5 ± 11.0	8.5	-	-
lb (<i>intra</i> -observer) [3]	0.896	-2.3 ± 5.7	0.9	-	-
SRF [3]	0.465	-11.5 ± 15.4	12.8	-	-
EASM-fully [3]	0.731	-9.8 ± 8.3	10.7	-	-
EASM-semi [3]	0.790	-9.4 ± 7.2	10.0	-	-
Unet1 [3]	0.791	-0.5 ± 7.7	5.6	-	-
Unet2 [3]	0.823	-1.0 ± 7.1	5.3	-	-
ACNN [3]	0.799	-0.8 ± 7.5	5.7	-	-
SHG [3]	0.770	-1.4 ± 7.8	5.7	-	-
Unet++ [3]	0.789	-1.8 ± 7.7	5.6	-	-
tomated EF [6]	-	1.8 ± 8.9	6.7	-	-
PLANet [4]	0.882	0.6 ± 5.8	-	-	-
1)d (A4C-only) ^a	0.705	-0.3 ± 8.4	6.7	8.5	0.428
al-View EF [2]	0.381	-	8.0	10.0	0.201
d (ours) - concatenate ^b	0.777	-0.5 ± 7.4	5.9	7.6	0.535
-R(2+1)d (ours)	0.903	-0.8 ± 4.9	3.8	5.0	0.792

Proposed a framework designed to tackle challenges in echocardiography. CDDenseUnet and TC-R(2+1)d outperforms current SOTA methods while achieving faster inference time reaching dice and MAE scores of 95.2% and 3.8%, respectively. The use of two-view and fully-segmented echocardiograms yielded superior results.

