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Abstract

Deep generative models have shown a lot of promise in various image-to-image trans-
lation tasks such as image enhancement and generating images from sketches. However,
when all the classes are not equally represented in the training data, these algorithms can
fail for underrepresented classes. For example, our experiments with the CelebA-HQ
face dataset reveal that this bias is prevalent for infrequent attributes, e.g., eyeglasses
and baldness. Even when the input image clearly has eyeglasses, the image translation
model is unable to create a face with them. To remedy this problem, we propose a data
and model agnostic, general framework based on contrastive learning, re-sampling, and
minority category supervision to debias existing image translation networks for vari-
ous image-to-image translation tasks such as super-resolution and sketch-to-image. Our
experimental results from the real and synthetic datasets show that our framework out-
performs the baselines both quantitatively and qualitatively.

1 Introduction
Generative Adversarial Networks (GANs) [11] have shown significant promise in synthesiz-
ing high-fidelity images [20, 21]. As a result, they have been adapted to achieve stunning
results in many image-to-image translation (I2I) tasks, such as super-resolution [24, 39, 44],
sketch-to-image [5, 6, 30], image inpainting [10, 45], etc. In these tasks, most current work
focuses on the quality of generated results.

In this work, we study the capacity of existing image-to-image translation models to
generate attributes that are in the minority in the training set. Figure 1 shows examples
from the Pixel2Style2Pixel (pSp) model [29] network, which is one of the most popular and
successful I2I models. The results for super-resolution and sketch-to-image tasks show an
incredible visual quality of synthesized images, but also show an utter failure to generate
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Figure 1: Examples of how Pixel2Style2Pixel (pSp) [29] is biased against minority attributes
in the CelebA-HQ dataset [19]. We also show results from our debiasing framework (Ours).

minority visual attributes, such as eyeglasses (about 5% of the data) or baldness (about 2%),
despite being clearly visible in the low-resolution or sketch input.

We have found that this problem is not limited to one particular architecture or dataset;
whenever there is class imbalance in the training set, existing I2I translation models exhibit
similar limitations. For example, we have trained the popular I2I translation model, pix2pix
[17], on two synthetic datasets and found that the generated images are biased towards ma-
jority attributes. This bias in I2I translation models can have a negative impact on various
important downstream applications (e.g., image enhancement by super-resolution).

Here, we identify the need to debias I2I translation models, and propose a general frame-
work to solve it. Normally used debiasing techniques, such as re-sampling [4, 36] and aux-
iliary classifier loss [27, 32], have not been explored for I2I. In this paper, we showcase
their success for I2I tasks. However, note that these methods only operate at the input level
(re-sampling), or at final generation (pre-trained classifier). Without additional constraint
in between, the latent features of biased classes can still become similar to the codes of
the non-biased classes at the encoding level. This can prevent the decoder from learning a
proper mapping between the latent codes and the output images from minority and majority
classes during the generation process. To overcome this issue, we apply supervised con-
trastive learning during training to separate the encoded features of the minority from the
majority, which helps the decoder to capture the features necessary to generate images with
the correct attributes for both classes. We further conduct extensive experiments to show
the effectiveness of our method on super-resolution and sketch-to-image I2I tasks. Figure 1
also shows how our method overcomes the bias problem for the pSp network. Note that our
framework is agnostic to the particular encoder/decoder architecture.

Contributions: 1) We identify the bias problem in image-to-image translation and propose
a new task of debiasing these models. 2) We propose a novel contrastive learning-based
approach which outperforms the baselines both quantitatively and qualitatively. 3) Finally,
we show that our model generalizes well, we apply it to multiple image-to-image translation
tasks and datasets.

2 Related Work
Image-to-Image Translation. The goal of image-to-image translation models is to map
images from a source domain (e.g., low resolution input) to images of a target domain (e.g.,
high resolution output), i.e., conditional image generation. The most notable work in this
direction is pix2pix [17], where they show that conditional GANs can be used to solve a wide
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variety of image-to-image translation tasks. Motivated by their success, researchers have
adopted specific conditional GAN architectures to solve specific image-to-image translation
problems, for example, super-resolution [24, 39, 44], sketch-to-image [5, 6, 30], semantic
label-to-image [26, 28, 49], unpaired translation [25, 48], or multi-modal image synthesis
[7, 15]. However, most of these models are application-specific and may not generate high-
resolution outputs.

For this problem, Pixel2Style2Pixel (pSp) [29] achieves promising results. Motivated by
the capabilities of StyleGAN2 [21] to generate photo-realistic images, they train an encoder
to project source images into the latent space of a pre-trained StyleGAN2 to solve image-
to-image translation tasks. They show the effectiveness of their approach on tasks such
as super-resolution, sketch-to-image, face frontalization, etc. Hence, we have chosen their
model for conducting our experiments. Additionally, we have used popular pix2pix model
[17] to test the generalizability of our approach.

Debiasing Frameworks. Bias and fairness have recently received a great deal of atten-
tion in the research community. Researchers have identified how the training datasets can
suffer from various biases [22, 37, 38] and how it can lead to undesired behaviors in various
image classification networks [1, 9, 13, 33, 34]. Some recent work explores using generative
models to create more balanced datasets for recognition tasks. For example, [3] creates syn-
thetic images with latent space exploration so that bias in the classification network can be
algorithmically measured. Similarly, to mitigate bias in classification networks, [2] adapted
a variational autoencoder to learn the probability distribution of latent features. Based on the
probability distribution, they re-sample those latent images which have lower probability to
balance the dataset during training. There is limited work that aims to reduce bias for image
generation itself; mostly, work has focused on the unconditional generation task to gener-
ate less biased distributions [31, 46]. All of these approaches focus on creating a balanced
dataset, rectifying problems in the classification network, or doing unconditional generation.

In the case of debiasing image translation models, very few frameworks exist. [18] pro-
posed debiasing I2IT models by using posterior sampling via gradient optimization, i.e., find-
ing the optimal latent codes given the input. However, their application is limited in the case
of reconstruction from noisy input, such as denoising or super-resolution. Furthermore, their
debiasing method is not applicable to encoder-decoder architectures, which is the common
architecture for I2IT models. Similarly, other works [16, 40] are either specific to model ar-
chitectures, thus limiting the scope to apply their ideas to latest SOTA I2IT models, or need
the generator to be retrained for learning a debiased representation. In this work, we propose
a framework that can be applied to any I2IT tasks and models. Our proposed framework
intercepts the encoding stage and it can even work for frozen generators (e.g., a frozen Style-
GAN2 generator). Additionally, unlike all previous works, our framework can debias while
maintaining high-quality. We describe our proposed framework in the following section.

3 Approach

In order to tackle the bias problem in the image-to-image translation models, we follow the
common setting for the most of the debiasing work (e.g. [1, 9, 13, 33, 34]): we assume the
bias is known or can be measured. In this section, we first discuss how we measure bias
in the Celeb-HQ dataset for the image-to-image translation task. Next, we introduce our
debiasing framework.
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Attribute Bald Wearing Hat Eyeglasses Blond Hair Bangs Black Hair Male Heavy Makeup High Cheekbones Smiling

Percentage ↓ 2.37 3.57 4.89 17.09 18.08 21.97 36.86 45.69 46.16 46.97
F1 Score on Real 0.8142 0.8908 0.9825 0.8483 0.8756 0.8186 0.9791 0.8906 0.8576 0.9333

F1 Score on Generated ↓ 0.7216 0.2500 0.0984 0.8288 0.8393 0.7725 0.9653 0.8444 0.8235 0.9089

Table 1: Bias analysis in the CelebA-HQ [19] dataset. The least three values in Percentage
and F1 Score on Generated are shown in bold.

3.1 Measuring the Bias
We use two main criteria to detect bias. The first criteria is simple and straightforward: sort
the attributes by the fraction of images in which they occur and select the attributes with
lower fractions. Naturally, if images for a particular attribute are rare, then generation can
become skewed against it. The second criteria is based on the ability to detect the attribute.
This is important because we would like to reliably evaluate the performance of the model,
and thus, we should select the attributes for which the classifiers show high accuracy.

To apply these criteria, we first train a ResNet152 classifier [12] on the same training
set as Pixel2Style2Pixel [29] (pSp) and filter any attribute that shows a low F1 score (using
a threshold of 0.8). For example, we observed an F1 classifier score higher than 0.95 for
‘Eyeglasses’ but a score of 0.0 for ‘Blurry’ which indicates ‘Eyeglasses’ clearly has better
image feature representation than ‘Blurry.’ We therefore choose attributes that have high F1
scores and are rare in the dataset, providing us with rare attributes that are easily labeled au-
tomatically. To validate that being a minority in the training dataset can pose a bias problem
for I2I task, we calculate the classifier F1 scores on generated images and assess the per-
formance on minority classes. Table 1 shows F1 scores on generated images along with the
percentage of biased class and classifier F1 scores on the ground truth. Unsurprisingly, the
under-performance is most pronounced in the attributes that are rare. There is a significant
drop in the F1 scores between the real and generated images, when the attribute is in less than
5% of the images. We also see this qualitatively in Figure 1. Additional examples are shown
in the supplementary material. Here, we can see that none of the generated images from the
pre-trained pSp network for either of the tasks faithfully reconstruct the attributes, although
they are clearly visible in the input images. We also run the classifier on the input images to
verify this (scores are included in the supplementary). This indicates the input images have
information about the attributes and the pSp network should be able to reconstruct them. In
the presence of bias, the model can also undesirably add some features. We can see from
Figure 1, this is the case for ‘Bald’, where the model is hallucinating hair. These errors can
have a detrimental impact on various downstream applications. Therefore, in this work, we
address this problem and propose a general debiasing framework. For debiasing, we select
the first 3 attributes from Table 1, i.e.,‘Bald’, ‘Wearing Hat’, and ‘Eyeglasses.’ It is worth
mentioning, although different tasks might require different ways of measuring bias, our de-
biasing framework is designed to be agnostic of how the bias is measured. In the following,
we discuss our proposed debiasing framework.

3.2 Our Debiasing Framework
To mitigate bias in existing image-to-image translation models, the first insight comes from
the exploration of images in the latent space. When the images from a certain group (e.g.,
images with eyeglasses or bald) are rare, their representation in the latent space can become
similar to the majority group. As a result, the model becomes biased to frequent patterns. To
remedy this problem, the key idea is to separate the latent codes for minority and majority
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Figure 2: Our proposed debiasing framework. We first start by creating a balanced batch
for a given attribute/class (Step I). Then, we apply supervised contrastive loss on the latent
features (Step II). Finally, we apply an auxiliary classifier loss based on the prediction of the
attribute/class on the generated images (Step III).

groups, allowing the model to generate from their respective distributions independently.
A simple way to solve this during training is to over-sample the minority. Over-sampling

the minority forces the network to see more instances of rare images and helps it encode the
attributes. This is our first step towards debiasing is Step I in Figure 2. Although re-sampling
is considered a general-trick for class imbalance problems, its effectiveness in image transla-
tion tasks has not been explored before. In some cases, it has been shown to not be effective
[35, 36]. To improve on this, we propose using metric learning based losses [8, 42] to further
separate the latent codes from different groups or classes. Here, we apply supervised con-
trastive loss [23]. This loss pulls together the representation of images from the same class
(whether minority or majority) in the latent space and pushes them apart if from different
classes. Mathematically,

Ls =−∑
i∈I

1
|P(i)| ∑

p∈P(i)
log

exp(zi·zp)/τ

∑x∈X (i) exp(zi·zx)/τ
(1)

Here, i ∈ I ≡ 1, . . . ,N (N is the batch size) is the index of an arbitrary sampled image Ii
from the set of all images I, X (i) ≡ I/ {i}, P(i) ≡ {p ∈ X (i) : yp = yi} (y is the binary
label or class of that image), zi = E(Ii) is the latent feature representation of the ith image,
Ii after it goes through the encoder E, and τ is a scalar temperature parameter. The positive
pairs zp in the supervised contrastive loss are obtained from the images that belong to same
class and negative pairs are the images that belong to different classes. For example, images
for ‘Eyeglasses’ will have positive pairs among themselves and images without ‘Eyeglasses’
will be the negative pairs in this case (shown as positive and negative examples in Figure
2). We should mention that we L2 normalize the latent features to get the corresponding
directions for applying supervised contrastive loss. However, the unit vectors or directions
may not be suitable for generation. For this purpose, we pass the latent codes, zi, through
a multi-layer perceptron (MLP) layer, φ , after we have applied the Ls loss. The decoder or
generator G then takes φ(zi) as inputs for generating the target images. This is the second
step in our framework (Figure 2 Step II).

Although we apply the contrastive loss in a supervised manner, and we are separating the
latent codes of minorities and majorities, this may not always give the generator, G, enough
incentive to focus on generating the particular attribute. So, to enforce this constraint further
during the generation process, we use an auxiliary classifier A to predict the desired attribute
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on the generated images, G(φ(zi)), from the decoder and apply binary cross entropy loss:

Lc =− 1
|I| ∑

i∈I
yi · log(ŷi)+(1− yi) · (1− log(ŷi)), (2)

where ŷi =A(G(φ(zi))). This can further assist the supervised contrastive loss, Ls, to sep-
arate the latent codes such that the desired attribute can be generated more easily. The final
loss function is as follows:

L= Lo +λs ∗Ls +λc ∗Lc, (3)

where Lo is the original loss function used to train the image-to-image translation model
without our changes, Ls is the supervised contrastive loss, and Lc is the auxiliary binary
cross entropy loss. The hyperparameters λs and λc balance the different losses. One thing to
note from our debiasing steps is that our framework has no dependency on a specific encoder-
decoder architecture. Thus, our approach generalizes to any image translation model.

4 Experiments
Dataset. We experiment on datasets where the bias occurs naturally. We also create two
synthetically biased datasets.

1) CelebA-HQ. For experiments with human faces, we have selected the CelebA-HQ
[19] dataset. As mentioned previously, in this dataset, the bias occurs naturally. The details
on our train-validation-test split are described in the supplementary. 2) Bags and Shoes.
Our first synthetic dataset consists of images of bags from ‘edge2bags’ [17] and shoes from
‘edge2shoes’ [17]. We have selected a total of 5000 images, where 4950 images belong to
‘Shoes’ category, and the remaining 50 are from ‘Bags’ (99:1 bias ratio). We call this dataset
‘Bags and Shoes.’ We separately keep 200 images in total for both validation and test set.
3) Cats and Dogs. For this dataset, we select animal faces from AFHQ [7]. Specifically, we
have selected faces of Cats and Dogs. The training, validation, and testing split follow the
same strategy as ‘Bags and Shoes.’ In this dataset, the majority class is ‘Cats.’

Tasks and Models. For experiments with faces, we select two popular image-to-image
translation tasks, namely, super-resolution and sketch-to-face. For performing these trans-
lation tasks on human faces, we have selected one of the recently proposed image-to-image
translation models, Pixel2Style2Pixel (pSp) [29]. As debiasing the image-to-image transla-
tion task is new, there are no existing baselines. Hence, for comparison, we created our own
baseline and variants of our model: 1) Vanilla. Original pSp network without any changes.
We train the network from scratch on our dataset for each of the attributes. 2) Sampling
Baseline. This is a trivial baseline where images from the minority class are resampled to
create a balanced batch (our Step I). We also apply data augmentations (e.g. shifting, shear-
ing, scaling, horizontal flipping, etc.) to all images when re-sampling. 3) Ours (I+II) In
this model, we take the first two steps from our pipeline, that is re-sampling and applying
supervised contrastive loss (Equation 1), Ls, during the encoding-decoding phase. 4) Ours
(I+III) Here, we only consider re-sampling and applying auxiliary loss (Equation 2), Lc. 5)
Ours (I+II+III) All three components in our debiasing framework.

For all of our experiments with pSp, we use the same frozen StyleGAN2 as the decoder,
pre-trained on FFHQ (which has good coverage for accessories like eyeglasses, hats, etc.).
Using this network, we were able to generate rare features in Celeb-HQ such as eyeglasses,
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hats, etc. (Figure 1, 3). This shows that the latent codes are already available in the pre-
trained StyleGAN2 generator network. Any problems, therefore, lie in pSp’s encoder, which
becomes biased during training with a biased dataset (e.g. Celeb-HQ).

Our debiasing framework is not only limited to the pSp network and human faces. We
can apply it to different I2I translation architectures, and images from domains other than
human faces. To show this, we have chosen another popular image-to-image translation
network, pix2pix [17], and perform edge-to-image task on our synthetic datasets, namely
‘Bags and Shoes’, and ‘Cats and Dogs.’ Similar to pSp, we create different variants of our
model for pix2pix. More details of our data augmentations and training procedures for both
models can be found in the supplementary.

Evaluation. To measure how well the models faithfully generate the attribute (or absence
of it), we report the classifier prediction scores on the generated images. We convert all
scores to the same scale (between 0 and 100). A model is better if it obtains high scores on the
minority group while maintaining the majority group performance. For fairness, we keep the
classifiers for evaluation different from our models (more details in the supplementary). For
the super-resolution task with pSp, we also report Learned Perceptual Image Patch Similarity
(LPIPS) [47] and MSE in order to evaluate whether our generated images overall match the
target images. For experiments with pix2pix, we perform edge-to-image synthesis; given the
loss of information in this task, we do not consider there to be a ‘ground truth’ image, so
LPIPS/MSE do not apply. In this case, we report Fréchet Inception Distance (FID) [14] to
measure if the generated images match the actual distribution of their respective classes.

4.1 Quantitative and Qualitative Results
Table 2 shows the results. Our model and its variations always outperform the Vanilla and
Sampling baselines for the minority groups. In terms of majority performance, Vanilla’s
performance is often better, as one would expect since it is biased to the majority class.
The table also reveals the individual contribution of all three components of our model.
For example, applying only supervised contrastive loss on top of re-sampling (I+II) helps in
almost all cases. Applying the auxiliary classifier loss (I+III) helps even more in 11 out of 18
cases. But when supervised contrastive loss is applied with the auxiliary classifier (I+II+III),
it improves the minority class scores for almost all cases, with a negligible difference in
the remaining case. For example, it leads to about 30% and 57% improvement in super-
resolution and sketch-to-face, respectively, for the ‘Wearing Hat’ minority class compared
to the sampling baseline. In this new task, general tricks like re-sampling and auxiliary
classifier help a lot, which is not always the case in many debiasing tasks [35, 36, 41, 43],
but adding the contrastive loss generally improves on these.

For tasks like super-resolution, it is also important to match the quality of generated im-
ages with the ground truth. Therefore, we report LPIPS [47] and MSE in Table 3. We can
see our framework performs debiasing without compromising the image quality. For further
qualitative comparison, we show the generated images from each of the models for each
attribute and task in Figure 3. We also show the ground truth images for super-resolution in
the right most column of 3 (a). We can see, in all cases, the Vanilla model does not produce
the desired outputs. Compared to other alternatives, we can see our methods produce much
better results. For example, ‘Wearing Hat’ appears to be the hardest attribute to reconstruct,
for both tasks. Even for this attribute, we can see our contrastive model (I+II+III) is produc-
ing hat-like shapes and textures. Additionally, we can see the quality of the images from our
model is similar or better than Vanilla in all cases, which suggests that our framework is an
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(a) Super-Resolution

(b) Sketch-to-Face
Figure 3: Results of our debiasing framework compared to the Vanilla and Sampling Base-
line model. Here, we show one example for each of the considered tasks across all attributes.
Our generated results better capture the attributes compared to baselines.

Sketch Vanilla
Sampling 
Baseline

Ours 
(I+III)

Bags and  Shoes Cats and Dogs
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M
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(I+II)

Ours 
(I+II+III)

Sketch Vanilla Sampling 
Baseline

Ours 
(I+III)

Ours
(I+II)

Ours 
(I+II+III)

Figure 4: Our debiasing framework is not only limited to a particular model. Here, we show
how our idea can be applied to pix2pix [17] to improve the quality of synthetic images in the
presence of bias.
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Task Attribute Group Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III)
Su

pe
r-

R
es

ol
ut

io
n Eyeglasses

Minority 15.27 89.95 91.55 92.35 92.85
Majority 98.52 98.21 98.6 97.8 98.7

Both 56.89 94.08 95.08 95.08 95.77

Bald
Minority 63.91 88.89 90.41 90.12 91.60
Majority 98.18 97.53 98.01 98.01 98.01

Both 81.04 93.21 94.21 94.06 94.81

Wearing Hat
Minority 23.19 60.71 61.95 78.31 80.84
Majority 98.4 97.62 97.93 97.95 98.21

Both 60.8 79.17 79.94 88.13 89.52

Sk
et

ch
-t

o-
Fa

ce

Eyeglasses
Minority 30.32 92.73 93.30 94.10 94.06
Majority 98.65 96.05 97.99 98.7 98.84

Both 64.48 94.39 95.64 96.39 96.45

Bald
Minority 46.88 85.26 81.03 86.80 89.12
Majority 98.3 95.47 97.09 96.46 95.53

Both 72.59. 90.36 89.06 91.63 92.32

Wearing Hat
Minority 15.58 32.38 50.49 78.61 79.50
Majority 98.37 98.07 97.69 97.01 97.19

Both 56.98 65.22 74.09 87.81 88.34

Table 2: Comparison of classifier prediction scores on all groups among the models across
different tasks and attributes.

Metric Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III)

LPIPS↓ 0.25 ± 0.06 0.24 ± 0.06 0.25 ± 0.06 0.24 ± 0.06 0.25 ± 0.06
MSE↓ 0.06 ± 0.03 0.05 ± 0.03 0.06 ± 0.03 0.05 ± 0.03 0.06 ± 0.03

Table 3: Quantitative results for image reconstruction in the super-resolution task. Our ap-
proach does not compromise image quality.

important tool for image-to-image translation models in the presence of bias.

4.2 Generalization to a Different Architecture

Here we discuss our results when we apply our framework to pix2pix [17] on datasets other
than human faces. Figure 4 shows the qualitative results among the models. For both
datasets, a common pattern is that the quality of the majority does not change by much.
The quality of the minority, however, varies a great deal. For ‘Bags and Shoes’, we can see
both Vanilla and the Sampling Baseline model try to fill the gap between the body of the
bag and strap. This is because most of the images from this dataset are shoes, and the con-
tour of shoes are always filled. Therefore, to resemble the majority ground truth images, the
generative model tries to fill the gap. The contrastive learning based approaches, especially
(I+II+III), do not fill up the space between strap and bag as much, and show minimal changes
compared to the other models. Similarly, for ‘Cats and Dogs’, the majority class is ‘Cats,’
and a frequent pattern is images having cat-like fur. As a result, both Vanilla and Sampling
Baseline’s outputs have cat-like fur in the minority group’s (‘Dog’) images. However, as
can be seen from this figure, our (I+II+III) model’s coloring is more authentic for the ‘Dogs’
class. We have also quantitatively evaluated the performance of all the models by calculating
FID scores between the generated images and ground truth. Table 4 shows the results. As we
can see, our model achieves the lowest scores, especially for the minorities, indicating better
quality of images for the selected task. For example, adding contrastive loss to re-sampling
with auxiliary classifier leads to 18% reduction of overall FID for ‘Bags and Shoes’ dataset.

Overall, our contrastive-learning based framework leads to consistent improvement for
both pSp and pix2pix (Table 2 and 4, Figure 3 and 4).
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Group
Bags and Shoes Cats and Dogs

Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III) Vanilla Sampling Baseline Ours (I+II) Ours (I+III) Ours (I+II+III)

Minority 202.30 135.22 140.26 130.73 122.77 241.98 189.35 181.29 183.04 177.22
Majority 233.92 159.33 151.63 152.66 116.89 64.32 70.40 76.22 65.82 68.42

Both 195.29 130.16 128.51 124.66 105.18 136.86 116.92 116.24 111.99 110.7

Table 4: FID scores show the effectiveness of our approach in a different image-to-image
translation architecture, using images from different domains.

Input pSp Output Debiasing for Bald Debiasing for Eyeglasses Ground Truth

Figure 5: An example case where dual bias can appear. In this example, the ground truth
image has both ‘Bald’ and ‘Eyeglasses’ attribute, and debiasing for only one attribute does
not necessarily debias for the other one.

5 Discussion and Limitations

Our debiasing framework achieves better performances compared to other alternatives across
different categories, different architectures, and different domains. However, so far, we have
made an assumption that the bias is known, which is the most common assumption in many
debiasing work [1, 9, 13, 33, 34]. This is because as long as there are attributes in the dataset,
we will always be able to know if the dataset has class imbalances and whether that might
lead to bias in the model. There can be various ways to measure the bias, and in Section 3.1,
we explored one way of measuring it.

In this work, there is another inherent assumption that the dataset is biased towards only
a single attribute/class. In reality, bias can appear in multiple attributes/classes simultane-
ously. For example, Figure 5 shows minority attributes, namely ‘Bald’ and ‘Eyeglasses’,
appear in the same image. The figure also shows how focusing on only one attribute might
not necessarily debias it for the other one (i.e. debiasing for ‘Bald’ does not debias for ‘Eye-
glasses’, and vice versa). One simple, straightforward way to tackle this problem will be
to merge multiple labels into single classes and apply our debiasing framework. However,
doing so might not be scalable if the labels are large in number. We would like to explore
this direction in future.

6 Conclusion

In this paper, we propose the new task of debiasing image-to-image translation models. Us-
ing Pixel2Style2Pixel and pix2pix, we have demonstrated that minority attributes are poorly
reconstructed whenever there is an imbalance in the dataset. To solve this problem, we have
proposed a novel contrastive-learning based approach to separate the latent codes of minority
classes from the majority classes. From the experimental results from both pSp and pix2pix,
we have shown that this contrastive learning approach, when coupled with general tricks like
re-sampling and auxiliary classifiers, leads to consistent improvements across all the tasks.
Our framework does not depend on any particular translation model or dataset, making our
solution model and data agnostic.
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