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1 Train-Validation-Test Split CelebA-HQ
For experimentation with the CelebA-HQ [3] dataset, we make separate datasets for each of
the attributes, namely ‘Eyeglasses’, ‘Bald’, and ‘Wearing Hat.’ For fair comparison, we hold
out an equal number of images from majority and minority classes for both validation and
testing. Note that the number of images from the minority classes are quite low in number
(e.g., 700 images for ‘Bald’). Therefore, we take 50 images from each class for validation
(100 in total) and 150 images for the test set (total 300 images). From the rest of the images,
we adjust the training dataset such that the original bias ratio remains unchanged for our
selected attributes. The exact number of images for each of the training dataset along with
validation and test is given in Table 1.

Attribute Group Train Validation Test

Bald
Minority 512 50 150
Majority 21,062 50 150

Both 21,574 100 300

Wearing Hat
Minority 870 50 150
Majority 23,523 50 150

Both 24,393 100 300

Eyeglasses
Minority 1,268 50 150
Majority 24,645 50 150

Both 25,913 100 300

Table 1: Train-validation-test splits for specific attributes.

2 Training Procedure
Data Augmentations. We apply data augmentations to both majority and minority classes.
Specifically, these augmentations are shifting 10% (both vertically and horizontally), shear-
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Figure 1: Example cases of bias for both super-resolution and sketch-to-face. Here, for both
tasks, the attributes are visible in the inputs images (i.e. Eyeglasses, Hat, Baldness) but they
are missing in the generated images.

ing 10%, scaling 10%, and mirror flipping.
Classifiers. For training, we replace the last fully connected layer of a pretrained ResNet50

[2], and re-train it again on our training dataset. This classifier is used for applying auxiliary
classifier loss, Lc. We train three separate classifiers, one for each attribute. Their perfor-
mances on the test sets are as follows:

• Bald. F1 score: 0.8889, Prediction scores: 87.13%, Accuracy: 90%

• Eyeglasses. F1 score: 0.9899, Prediction scores: 95.99%, Accuracy: 99%

• Wearing Hat. F1 score: 0.951, Prediction scores: 90.65%, Accuracy: 95.33%

To train the classifier for evaluation, we train a deeper network, ResNet152 [2], on the
same training sets. This improves the accuracy for prediction for ‘Bald’ (94%) and ‘Eye-
glasses’(99.33%), which makes it reliable for prediction. This also keeps our evaluation
classifier network architecture and weights separate from ResNet50 network which was used
for Lc during training. This is critical for fair evaluation as we do not want to evaluate using
a classifier which was used for training since the network is optimized to perform well for it.
Training the evaluation classifier follows the same procedure. Their performances are:

• Bald. F1 score: 0.9362, Prediction scores: 90.16%, Accuracy: 94%

• Eyeglasses. F1 score: 0.9933, Prediction scores: 94.67%, Accuracy: 99.33%

• Wearing Hat. F1 score: 0.951, Prediction scores: 91.44%, Accuracy: 95.33%

Measuring Bias. We use CelebA-HQ [3] to demonstrate how we can measure bias in
image-to-image translation tasks. We use CelebA-HQ for two reasons. First, it has 40 labeled
binary attributes (e.g. ‘Eyeglasses’, ‘Bald’, etc.), making detecting bias easier compared to
unlabeled data (such as Flicker-Face-HQ or FFHQ [4]). Second, it is widely used to train
both conditional and unconditional generative models [1, 3, 5, 7, 8], making it an ideal
dataset for bias analysis. Some additional examples of biases are showed in Figure 1.

For measuring bias, we generate images for the super-resolution task. We down-sampled
the ground truth test images by a factor of 8 and applied the super-resolution pSp network
(which has been pre-trained on the same dataset as our classifier). We use a ResNet152
classifier (trained on pSp training set) to calculate the F1 scores on real and generated images
for measuring biases. These numbers are reported in Table 1 in the main paper. Note that
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Attribute Bald Wearing Hat Eyeglasses Blond Hair Bangs Black Hair Male Heavy Makeup High Cheekbones Smiling

Percentage 2.37 3.57 4.89 17.09 18.08 21.97 36.86 45.69 46.16 46.97
Low-Resolution Inputs 0.6488 0.8523 0.6613 0.5891 0.6280 0.8173 0.9414 0.2988 0.4641 0.7595

Sketches 0.2234 0.7215 0.8747 0.0000 0.3366 0.0311 0.7615 0.5590 0.1606 0.5848

Table 2: F1 scores on low-resolution and sketch input images.

having a low F1 score means either 1) low recall: the model failed to generate the desired
attribute in the generated images (for example, not generating images with eyeglasses where
the ground truth images have this attribute), or 2) low precision: the model generated an
attribute where it should not have (e.g., producing hair when the person is bald). Both cases
represent a bias problem. Therefore, low F1 score on the generated images can reveal the
biases for the attribute.

Here, we report the F1 scores on the low resolution inputs and sketches. The numbers
appear in Table 2. The numbers for most of the attributes, especially for ‘Eyeglasses’ and
‘Wearing Hat’, show that there is enough information in the input images to generate the
attributes in question.

Training. Here we describe our changes to Pixel2Style2Pixel [7] (pSp) and pix2pix.
In the case of pSp, it encodes the input images using a feature pyramid backbone [6] and
maps them to the extended latent space of a frozen StyleGAN2 [5] generator (pre-trained on
FFHQ [4]), W+, which is consists of 18 different 512-dimensional feature vectors, one for
each StyleGAN2 layer. We apply our contrastive loss (Equation 1 in the main paper), Ls, to
the latent codes of each of the layers in W+ separately. The latent codes then are followed
by MLP layers, which consists of two linear feed-forward networks with 512 hidden units
and a ReLU activation in between (one MLP for each of 18 input layers in StyleGAN2). The
temparature parameter in Equation 1 is set to 0.07 for all experiments. Finally, we apply
auxiliary classifier loss (Equation 2), Lc, on the outputs of the decoder.

For pix2pix, we apply the U-Net architecture for the sketch-to-image translation model.
Similar to pSp, we refer to the original pix2pix model as ‘Vanilla’ and re-sampling the mi-
nority during training as ‘Sampling Baseline.’ For our model (I+II+III), we make similar
changes to pix2pix. Specifically, on top of re-sampling, we apply the supervised contrastive
loss, Ls (Equation 1) to the output of bottleneck layer of the encoder. After applying Ls, we
pass the features through MLP layer, φ , and add an auxiliary classifier loss (Equation 2), Lc,
at the end. We also experiment on other two variations of our model (I+II and I+III).

For training our model for both pSp and pix2pix, we follow a curriculum learning proce-
dure. We introduce our losses (supervised contrastive loss, Ls, and auxiliary classifier loss,
Lc) after k iterations. We start with a small value of m for both hyperparameters for super-
vised contrastive loss, λs, and auxiliary classifier loss, λc. These hyperparameters are then
increased by m every k iterations.

For pSp, k = 10,000, and m = 0.001. We apply similar curriculum training procedure
for pix2pix as well. Here, m = 0.01. Instead of k iterations, we apply the losses after the
first epoch. The values of the hyperparameters are increased by the same value, m, after each
epoch. For both pSp and pix2pix, Ours (I+II) and (I+III) follow the same training steps,
except the hyperparameter for a specific loss is set to zero. For example, for Ours (I+II),
λc = 0, and for Ours (I+III), λs = 0.

3 Additional Results and Examples
We show additional examples for the Vanilla and Our Model (I+II+III) from our human face
experiments in Figure 2-7.
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Figure 2: Results for super-resolution task on ‘Eyeglasses’.

Input Vanilla Ours Ground Truth

Figure 3: Results for super-resolution task on ‘Bald’.
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Figure 4: Results for super-resolution task on ‘Wearing Hat’.

Input Vanilla Ours

Figure 5: Results for sketch-to-face task on ‘Eyeglasses’.



6 TANJIM, SINGH, KAFLE, SINHA, COTTRELL: DEBIASING I2IT MODELS

Input Vanilla Ours

Figure 6: Results for sketch-to-face task on ‘Bald’.

Input Vanilla Ours

Figure 7: Results for sketch-to-face task on ‘Wearing Hat’.
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