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Abstract

Semi-supervised object detection is important for 3D scene understanding because
obtaining large-scale 3D bounding box annotations on point clouds is time-consuming
and labor-intensive. Existing semi-supervised methods usually employ teacher-student
knowledge distillation together with an augmentation strategy to leverage unlabeled point
clouds. However, these methods adopt global augmentation with scene-level transforma-
tions and hence are sub-optimal for instance-level object detection. In this work, we
propose an object-level point augmentor (OPA) that performs local transformations for
semi-supervised 3D object detection. In this way, the resultant augmentor is derived to
emphasize object instances rather than irrelevant backgrounds, making the augmented
data more useful for object detector training. Extensive experiments on the ScanNet
and SUN RGB-D datasets show that the proposed OPA performs favorably against the
state-of-the-art methods under various experimental settings. The source code will be
available at https://github.com/nomiaro/OPA.

1 Introduction

3D object detection aims to recognize and localize objects in a 3D scene by specifying them
with their oriented bounding boxes and semantic classes. Compared to 2D images, 3D scenes
provide rich geometric structure information and hence are crucial for many advanced 3D
vision applications such as autonomous driving, AR/VR, and robot navigation. Recent re-
search efforts [5, 16, 19, 20, 21, 33, 34, 38] have been made on 3D object detection and
achieve significant progress. However, most existing methods are data-hungry and rely on
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large-scale labeled 3D objects, leading to a vast amount of costly manual efforts. To address
this issue, it is favorable to develop semi-supervised learning (SSL) algorithms for 3D object
detection where plenty of unlabeled 3D point clouds can be leveraged to compensate for the
lack of labeled data and to improve detector training.

Several SSL approaches [9, 14, 22, 23, 27] for 2D object detection are developed based
on teacher-student mutual learning, where pseudo-labels of unlabeled data are estimated and
used as supervisory signals for detector training. For 3D object detection, 3DIoUMatch [29]
employs two identical pre-trained networks to initialize a teacher-student model and ap-
plies asymmetric data augmentations to transform data samples. To be specific, the input
data to the student model are globally transformed by strong augmentations for data regu-
larization and variance enhancement, thus offering rich information to boost the capability
of the student model. On the other hand, the input data to the teacher model are obtained
by weak augmentations to generate pseudo-labels to supervise the student model. Prior
work [1, 14, 23, 29, 36] shows that this asymmetric data augmentation mechanism is crucial
for improving semi-supervised learning in a teacher-student model. However, most existing
SSL methods for 3D object detection, such as 3DIoUMatch [29], adopt scene-level trans-
formations, which is sub-optimal as augmenting irrelevant backgrounds may degrade the
effectiveness of the augmented data. To address this issue, we present a method that takes
both global and object-level data augmentations into consideration and thus generates more
plausible augmented point cloud objects for SSL.

Compared to 3DIoUMatch which applies augmentations such as rotation and scaling
to the entire point cloud scene, our method focuses on point cloud object augmentation,
which better benefits the teacher-student framework. In this work, we present OPA based
on a teacher-student mutual learning framework with an object-level augmentor for semi-
supervised 3D object detection. To this end, we utilize a two-stage training procedure, in-
cluding the pre-training and semi-supervised learning stages. First, we design an adversarial
formulation to jointly pre-train a detector with an augmentor, where the augmentor takes
point clouds within the object bounding box as the input, as well as the objectness guidance
from the detector to control the learning pace in augmentation. Then, the augmentor out-
puts displacement values for each point as augmentation to improve data variations for the
detector.

In the semi-supervised learning stage, we freeze the learned augmentor and use it to
produce the object-level augmented point clouds. We leverage both ground-truth and pseudo-
labeled bounding boxes inferred by the teacher model, respectively from the labeled and
unlabeled data, to identify point cloud objects that serve as the input to the augmentor. As
a result, the produced point clouds exhibit local variations and are complementary to those
produced by global scene-level augmentations, thus improving the teacher-student model
learning. In experiments, we show that our OPA performs favorably against the state-of-
the-art methods for semi-supervised object detection on two benchmark datasets, including
ScanNet [6] and SUN RGB-D [24]. In addition, we demonstrate that the proposed augmentor
is effective when it is applied to labeled or unlabeled point clouds, and is beneficial from our
designed augmentor loss function that is aware of the objectness score from the detector. The
main contributions of this work are summarized as follows:

1. We propose a simple yet effective method for semi-supervised 3D object detection via
introducing an object-level augmentation strategy in point cloud scenes.

2. We integrate the proposed augmentor into the teacher-student mutual learning frame-
work and jointly train the entire model to make use of labeled and unlabeled data.
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3. We design a learning mechanism to make augmentor aware of the objectness fron
detector and thus generate appropriate augmentations to improve 3D object detec

2 Related Work

Semi-supervised Learning. Semi-supervised learning (SSL) aims to train a model us
ing few labeled data and abundant unlabeled data. Numerous SSL strategies have
developed in the literature. Tjonsistency regularizationMethods of this category such
as [1, 9, 18, 31] apply different transformations to a data sample and enforce consiste
of model predictions among the transformed samplesTe2cher-student framewaorkt
often employs two identical networks, one for a teacher model and the other for a stuc
model [22, 27]. The teacher model is rst frozen to guide the student model and is th
updated from the student model. B¥eudo-labelinglt usually works in a self-supervised
manner and derives the model using unlabeled data with their estimated pseudo-labels
Fixmatch [22] combines the teacher-student framework and pseudo-labeling. It utilizes k
student's and the teacher’s predictions to enhance the quality of pseudo-labels. One key
ponent of this method is asymmetric data augmentation. The strongly augmented inputs,
those via Mixup [35], to the student model enrich data variance for model training, while t
weakly augmented inputs to the teacher model ensure more accurate pseudo-labels f
pervision. Based on the teacher-student framework, we propose an effective object-I
augmentation method that focuses on point cloud instances in a scene.

Semi-supervised Object Detection. For 2D object detection in SSL, consistency-basec
methods [7, 25, 26] enforce the prediction consensus over different augmentations. M
over, self-supervised approaches [13, 23, 30] apply a teacher-student framework with pse
label supervisions [11, 14, 23, 26, 32, 37]. Forinstance, STAC [23] and Unbiased Teachel
apply the teacher-student framework with asymmetric data augmentation to enlarge
variance and Iter pseudo-labels to keep high-con dence object proposals. However, for
3D scenario, there are fewer explorations of SSL for 3D object detection. SESS [36] enfol
consistency over different augmentations as regularization. Furthermore, 3DloUMatch |
designs a 3D loU estimation module based on VoteNet [16] as an loU-aware Votenet, wi
calculates the loU score of object proposals. Then, it takes loU scores into account to
out low-con dence pseudo-labels, with a selective mechanism to supervise unlabeled
using Itered high-quality pseudo-labels. In contrast, the proposed OPA introduces obje
level point augmentations, which is an essential step towards a successful teacher-stt
framework for SSL, and has not been widely studied in 3D object detection.

Data Augmentation on Point Clouds. Data augmentation is important for deep learning
Because training data cannot cover all kinds of scenarios in the complex world, data augnr
tation is utilized to enlarge the diversity of training data. In 3D point cloud tasks, global au
mentation operations like rotation, scaling, and translation with point-wise jittering [15, 1
are commonly used. However, those augmentation methods cannot transform the local s
ture in a point cloud. Therefore, recent works aim to improve the augmentation strategies
point clouds. The method in [4] divides an object and applies different augmented operati
in each partition. Moreover, PointAugment [12] trains an auto-augmentor network that
learn to augment point cloud samples for better point cloud classi cation. PointWOLF [
presents another method for the classi cation task where a convex combination of multi
transformations with smoothly varying weights carries out the local structure augmentati
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Table 1: Results of pre-de ned object-level augmentations.

Setting ScanNet 10% SUN RGB-D 5%
mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5
Without Object-level Aug. 47.1 28.3 39.0 211
Pre-de ned Object-level Aug. (scale, ip, rotation) 42.7 24.2 24.9 13.6
Pre-de ned Object-level Aug. (displacement, range at 0.5%) 48.4 29.1 40.6 20.4
Pre-de ned Object-level Aug. (displacement, range at 1%) 49.0 29.3 40.5 20.9
Pre-de ned Object-level Aug. (displacement, range at 5%) 47.3 27.4 395 20.5

Based on the Mixup [35] idea in images, PointMixup [2] interpolates two point cloud ob-
jects to create an augmented point cloud, and the model is trained to predict the ratio of tw
mixed classes with a soft label. PointMixSwap [28] further explores the structural varianc
across multiple point clouds and generates more diverse point clouds for training data enric
ment. For 3D object detection, PPBA [3] iteratively nds the best augmentation parameter
of speci c operations and applies them to the entire scene.

Compared to the above-mentioned methods that focus on the classi cation task or tt
combination of pre-de ned augmentation operations, we study the SSL setting for 3D objec
detection by introducing a simple yet effective augmentation method. We focus on learnin
an augmentor that can synthesize object-level point clouds for foreground objects, serving
a better asymmetric augmentation module that is jointly trained in a teacher-student fram
work to achieve better SSL performance.

3 Proposed Method

This section elaborates the proposed method OPA. We give the problem de nition an
method overview in Section 3.1, and then describe our object-level augmentor and its trai
ing pipeline in Section 3.2.

3.1 Problem De nition and Algorithmic Overview

Given a 3D point cloud scene &pointsx 2 RS 3, 3D object detection aims to recognize
and locate objects of interest inand describe them by their semantic classes and orientec
bounding boxes. For learning a 3D object detector under the semi-supervised setting, \
are givenN, labeled scene‘sx} ;y} gi'\ﬂl andN, unlabeled scene‘sq’gi'\iul, whereN, << Ny

in practice. The ground-truth annotatigh stores the oriented bounding boxdsg and
semantic label§cyg of the objects of interedto,g in x}.

Teacher-student knowledge distillation with asymmetric data augmentation has show
its effectiveness for semi-supervised 3D object detection. However, previous works [29, 3¢
focus on scene-level augmentation and ignore that object-level variances are crucial for d
tection. One way to address this issue is to apply augmentations, e.g., a random rotation, i
and scale, to the point clouds within each object bounding box. However, such a method
sub-optimal, and its performance depends on proper augmentation settings. In Table 1,
nd that pre-de ned random augmentations, especially rotations, may confuse model learr
ing and even harm the performance signi cantly. For scene-level augmentation on 3D obje
detection, rotation is widely used to enhance data variance without changing geometric r
lationships between foreground objects and background. However, for object-level augme
tation in a scene, each object has its own orientation with respect to the global scene. Thu
changing the object-scene context during augmentation may lead to negative effects.
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Figure 1: OPA pipeline at (a) the pre-training stage and (b) the SSL stage.n the
pre-training stage, we utilize globally and fully augmented labeled scenes to jointly tr
the detector and augmentor using an adversarial strategy. In the SSL stage, we leverag
teacher-student framework with our frozen object-level augmentor. The teacher model ¢
sumes unlabeled data to generate high-quality pseudo-labels. Both labeled and unlat
data are globally augmented and fully augmented to train the student model, where the
mentor takes points within each object bounding box as input and outputs the augme
points. Finally, the teacher model is updated from student model via EMA.

We instead consider point displacement for augmentaiton since it can enhance ob,
level data variance while keeping object orientations. As shown in Table 1, we try differe
ranges of displacement. Although using random displacements slightly improves the |
formance, it requires to pre-de ne a proper range of displacement, e.g., using too large
too small displacements may not be optimal. These issues motivate us to develop a b
strategy via learning an augmentor for object-level augmentation that bene ts 3D object
tection. By learning an augmentor to generate proper displacement values, we preserv
intrinsic characteristics of an object and avoid over-deforming it.

Teacher-Student Framework in SSL. We aim to learn an augmentor that can synthesiz
plausible object instances while excluding irrelevant backgrounds, without twisting any al
mentation parameters. Moreover, the augmentor can be integrated into the teacher-st
framework and supports SSL. Fig. 1(b) shows the training pipeline. The teacher and stu
models are initialized from the same model. The teacher model is updated from the stu
model using the exponential moving average (EMA) mechanism, while pseudo-labels
unlabeled data are generated by the teacher model and are lItered to provide high-qualit
bels to the student model. The ground-truth and pseudo-labeled bounding boxes respec
from the labeled and unlabeled data are used to supervise the student model.

A key component making the teacher-student framework effective is data augmentat
We rst follow [29] to apply the global transformations (e.g., rotation, ip, scale) to point
cloud scenes, where the weak and strong augmentations are used for the teacher and s
models, respectively. More details can be referred to [29]. To integrate our object-le
augmentor, after global augmentation, we apply our augmentor to points within each ob
bounding box. Note that we only use the augmentor for the student model (see Fig. 1(
as the student model is the main model for updating parameters from loss functions.
practice, we also have tried to apply our augmentor to the teacher model but it does
show signi cant differences. To train our augmentor, we utilize a pre-training stage, sho
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Figure 2: Given a point cloud scene2 RN 3 with M objects, we identify the object
pointsfR, 2 R% 3gM , in the M bounding boxes, wher§, is the number of points within
the bth bounding box. Point sampling is appliedftB,g and makes each of the resultant
sampled object§R,g haveS points, which then serve as the input to the augmentor. The
augmentor outputs the displacemefify, 2 RS 3g. We map them back to their original
sziesf Dp 2 R% 3gvia reverse sampling. FinallfyDy,g is added back to the scene to obtain
the object-level augmented sceng2 RN 3

in Fig. 1(a), to jointly train the augmentor and detector using only the labeled data. Thi
reason is that, in the SSL stage, we nd that using the unlabeled data with noisy pseud
labeled bounding boxes would cause instability in training the augmentor. More details ar
described in the following section.

3.2 Object-level Point Augmentor

In this work, we aim to train an object-level augmentor that can determine point-wise pa
rameters for foreground points and increase the variation of local structure in a scene. Di
ferent from PointAugment [12], we use only the point-wise displacerdetd transform
object points since we observe that random rotation is not helpful in 3D object detection &
mentioned in Section 3.1. In addition, we dynamically learn the augmentor that control
the appropriate magnitude of point displacement based on objectness scores of the detec
Lastly, we leverage both labeled and unlabeled data to mutually update both the detector a
the augmentor via an adversarial learning strategy.

Augmentation Process.The augmentation processing is illustrated in Fig. 2. Given a glob-
ally augmented 3D point cloud scene containing objects and their bounding b(@;ggg

we sampleM foreground objects from this scene to apply object-level augmentations. Fo
unlabeled scene, we utilize its pseudo-labeled bounding tfoogeigg. For each scene, the
points inside the\ bounding box proposals are collected, if®, 2 R% 3gM |, whereS,

is the number of points inside th#h proposal. Then, we either up-sample by padding or
down-sample by farthest point sampling (FPS) to make each object have eladdipts

fR, 2 RS 3gb_1 while keeping each object structure unchanged. The augmentor takes th
sampled objecta‘,Png_1 as input and outputs point-wise displacemefridg, 2 RS 3gb_

for point cloudsf Pngb_ To match dlsplacemerﬁlDbg , back to the point clouds of the
original sized Dy, 2 RS’o 3gb_ 1, we record the mapping from, to B, and apply the reverse
mapping. The point-wise dlsplacemémbgb= 1 is added to the object pomlt:’é{,gb= ,asour
object-level augmentation. The fully augmented scenis obtained by replacing the orig-
inal object points with the augmented points. Note that after obtaining augmented point:
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we restrict the displacement not to exceed the original bounding box. The original obj
points within the bounding box can be replaced by the augmented points that t the origil
background while not affecting other objects.

Joint Augmentor and Detector Training. We use labeled data, including globally aug-
mented samplefsx'gg and fully augmented sampléslg via our augmentor, to jointly train
the detector and augmentor in the pre-training stage. The augmentor is optimized to ge
ate proper augmented sce(geand to maximize the detector capability, while the detector i
derived to localize and recognize the augmented data accurately.

Detector Loss.For training the detector, we formulate the loss functignas follows:
Lo = La(XgYg)*+ La(Xa:Va); (1)
whereL 4 is the detection loss used in [29].

Augmentor Loss. Similar to PointAugment [12], the fully augmented samy]eshould sat-
isfy the following two requirements: 1) Predictilxg should be more challenging thaxb,
e, La(xhyh) L a(xyyy); 2)xh andxy should be similar to some degree by enforcing tha
they are predicted as the same class. To satisfy the two requirements, we use a dynamic
abler to control the augmentation magnitudeg(x,;y%) should be larger thah 4(x! ;yl_;)

for the rst requirement and should not become too far for the second requirement. Thus,
maker L 4(xy;yy) be the upper bound dfy(x}; yh). With a larger value of , the augmentor
generates more challenging augmented samples. On the other hand, the smaller value
can avoid over-deforming the augmented samples. The augmentardds$ormulated as

La= La(;ye)+ 1j1 exp(La(x;ys) 1 La(Xyyg)i; @)

wherel is a pre-de ned constant used to balance the importance between the object
tection term and the augmentation magnitude term. 1 is set to ensuré 4(x! ;y'a)
Ld(x'g;y'g), while r cannot be too high otherwise the augmented samples become too cl
lenging. To balance it, we follow [12] and boumdbetween 1 and a value based on the
classi cation probability. Different from [12], we further include a tegimto maker aware

of the objectness for our object detection task:

C
r = maxLexp¥o Q Jc Yo)); @A)

c=1

whereC is the number of classeg, Jc, andy, are the class label, classi cation probability,
and objectness score, respectively.

We nd that our introduced), term is critical to our task. As a metric to evaluate the
objectness abilityy, is more suitable than the loU score which is too sensitive to the boun
ing box location. When the class probability or the objectness ster§,, of a sample is
higher, it implies that this sample can be well classi ed by the detector, so we may us
larger value of to allow more augmentations and make the augmented sample more cl
lenging. Since the augmentor is learned in a class-agnostic fashion, the objectness
provides class-agnostic guidance to control the dif culty of the augmented samples, wh
in turn improves the learning of object detector. Finally, we alternatively trgimndL  in
the pre-training stage.
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Overall Loss Functions for SSL.In the SSL stage, we initialize the student and teacher
models from the pre-trained detector and freeze the augmentor. The training pipeline is |
lustrated in Fig. 1(b). In each training batch, there are labeled safplgsg and unlabeled
sampled xYg. After applying global augmentation and our augmentor, we collect four kinds
of data for the student model to learn: globally augmented labeled dggaand unlabeled
dataf xgg, fully augmented labeled dafal,g and unlabeled datixg. The student model
outputs corresponding predictiorig;, ¥5, V5, andys. For labeled data, andy, are super-
vised with the ground truths via

Li = La(XgYg) + La(Xa:Ya): 4
For unlabeled datdyg andy; are supervised by Itered pseudo-labgts
Lu= La(xg¥g)+ La(Xa:Va): (5)

The overall loss in SSL for both labeled and unlabeled datasigg= L, + L. The teacher
model is updated by Exponential Moving Average (EMA) from the student model.

4 Experiments

Datasets. We follow the settings in the prior work [29, 36] for semi-supervised 3D object
detection. ScanNet [6] is a 3D indoor benchmark dataset. It contains 1,201 training and 3:
validation scenes with the reconstructed meshes. We focus on the 18 semantic classes. S
RGB-D [24] is another 3D indoor benchmark dataset. It is composed of 5,285 training an
5,050 validation scenes. We use 10 object classes to evaluate our model.

Evaluation Metrics. For both benchmarks, we split them into the labeled and unlabeled
data to perform semi-supervised learning. We apply 5%, 10%, and 20% labeled data rat
settings to conduct our experiments. We adopt mAP (mean average precision) as the evalu
metrics and report mMAP@0.25 (mAP with 3D loU threshold at 0.25) and mAP@0.5 scores

Implementation Details. For pre-training, we use a batch size as 4 to train the augmentor.
We useM = 3 foreground objects in one scene and sangte 1024 points using either
FPS or point padding according to the original point size. We train the detector and th
augmentor for 900 epochs and use the Adam optimizer with an initial learning rate of 0.00:
The learning rate decay by 0.1 occurs in the 80600", and 808" epoch. To further
stabilize the training, we leverage a warm-up mechanism that does not train the augment
for the rst 100 epochs. For the augmentor loss (2), wd set0:1.

In the SSL stage, a batch is composed of two labeled data and four unlabeled data. \
leverage ground truth bounding boxes to iden8fy 3 foreground objects in labeled data,
while for unlabeled data, we randomly pi&< 3 foreground objects from top-6 pseudo-
labels with the highest con dence calculated by the loU and objectness scores from th
detector outputs. The loU score represents the localization quality of the proposals ar
the objectness score shows the classi cation quality. We take both them into account ar
select the pseudo-labels of high quality. This mechanism avoids some easy samples w
high con dence being selected all the time, which increases the chance that the model ¢
observe more data variations. We train the detector for 1,000 epochs and use the Ad:
optimizer with an initial learning rate of 0.002. The learning rate decays 0.3, 0.3, 0.1, O..
at 400th, 600th, 800th, and 900th epochs, respectively. We conduct experiments on a sin
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Table 2: Results on ScanNet val set and SUN RGB-D val set for 5%, 10%, 20% labe
data ratio. We run the experiments under 3 random data splits and report our resu
meanzstandard deviation for the mAP@0.25 and mAP@0.50 metric.

5% 10% 20%
Dataset Model mAP mAP mAP mAP mAP mAP
@0.25 @0.5 @0.25 @0.5 @0.25 @0.5
VoteNet [16] 27.9+0.5 10.8+0.6 36.9+1.6 18.2+1.0 46.9+1.9 27.5+1.2
SESS [36] NA NA 39.7+0.9 18.6 47.9+0.4 26.9
ScanNet 3DloUMatch [29]  40.0+0.9 22.5+0.5 47.2+0.4 28.3+1.5 52.8+1.2 35.2+1.1
OPA 41.%1.5 25.0:0.4 50.5t0.2 32.#1.0 54.7#0.3 36.8:0.8
Gain (%) 1.9 2.5 33 4.4 1.9 16"
VoteNet [16] 29.9+1.5 10.5+0.5 38.9+0.8 17.2+1.3 45.7+0.6 22.5+0.8
SESS [36] NA NA 42.9+1.0 14.4 47.9+0.5 20.6
SUN RGB-D3DloUMatch [29]  39.0+1.9 21.1+1.7 45.5+1.5 28.8+0.7 49.7+0.4 30.9+0.2
OPA 41.60.1 23.1#0.5 47.2+0.7 29.6t0.8 50.8t1.0 31.5:0.6
Gain (%) 2.6 2.0 ir 0.8 i 0.6

GTX 2080-Ti GPU. For fair comparisons, we follow the procedure in [29] to use the stude
model for inference, along with a post-processing step on nal predictions.

4.1 Experimental Results
4.1.1 Main Results

Table 2 shows the result of our method on ScanNet and SUN RGB-D, under different labe
data ratios compared with state-of-the-art methods for 3D object detection in SSL, incluc
VoteNet [16], SESS [36], and 3DloUMatch [29]. The proposed OPA method consisten
performs favorably against existing approaches in all the settings. Moreover, our met
performs better in settings with lower labeled data ratios, e.g., SUN RGB-D 5% and Scan
10%, which shows the advantage of the proposed augmentor. Note that, since the

number of scenes in ScanNet is ve times less than the one in SUN RGB-D, we nd that t
performance gain of 5% ScanNet is slightly less than the 10% ScanNet setting, which

be caused by the less data to train the augmentor. More results and analysis are provid
the supplementary material.

4.1.2 Ablation Study

Augmentation on Labeled and Unlabeled Data. We rst study the effect of our augmen-
tor trained on labeled or unlabeled data. In Table 3, comparing to ID (5) using our augmet
on both labeled and unlabeled data (i.e., our full model), we show the bene t by removi
labeled or unlabeled data in ID (2) and (3), respectively. Moreover, comparing ID (1) wi
ID (2) and ID (3), where we include unlabeled and labeled data in our proposed augme
with Yo, the performance gains (ScanNet 10% mAP@0.5) are 3.1% and 3.4%, respecti
In ID (2), the augmentor helps unlabeled data to produce better data variance for stu
model training. In ID (3), the augmentor provides more diverse supervised samples in
pre-training stage. This shows that our augmentor can take advantage of different data
improve performance. Note that, experiments are conducted in one of the same data ¢
for fair comparisons, and thus the numbers of our full model are slightly different from tl
averaged numbers in Table 2.
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Table 3: We study the affect of proposed components in our augmentor in settings ¢
ScanNet 10% and SUN RGB-D 5% labeled data ratio.

ScanNet 10% SUN RGB-D 5%
ID  Aug. (labeled)  Aug. (unlabeledy, in (3) mAP mAP mAP mAP
@0.25 @0.5 @0.25 @0.5
) 471 283 381 213
@ P P 50.4 314 401 232
®) P P 50.4 317 40.1 225
) P P 485 29.3 38.1 221
©) P P P 50.7 324 418 235

Table 4: Sensitivity analysis of in (2) on ScanNet 10% labeled data ratio.

ScanNet 10%

I in(2)
mAP@0.25 mAP@0.5
0.01 49.8 321
0.05 50.5 31.4
0.1 50.7 32.4
0.5 50.1 31.7
1.0 48.9 29.5

Objectness Termy, in (3). Different from PointAugment [12], we introduce an object-
ness term in (3) that controls the magnitude of augmentation, so that the augmentor is awe
of the quality of class-agnostic detection results and learns how to generate appropriate a
mentations with challenging variations. In Table 3, ID (4) without using this objectness tern
performs worse than our full model in ID (5), which indicates that this term is essential tc
generate augmentations that are helpful in our SSL setting.

Sensitivity on| in (2). In Table 4, we test the sensitivity dnin (2) when training the
augmentor using 10% labeled data on ScanNet. The higher lambda values (e.g., 1.0) acc
erate the training processing of our augmentor to become more aggressive (i.e., generat
more challenging samples), which may harm the stability in the early training stage, thu
leading to worse performance. On the other hand, the lower lambda values control the pa
for training the augmentor in an appropriate step, stabilizing the training and leading to be
ter performance. Overall, Table 4 shows that our method is robust 1o tiadue when it is

in a reasonable range (e.g., fron@Dto Q5). In all the experiments, we chooke= 0:1.

5 Conclusions

In this paper, we propose OPA, a novel teacher-student mutual learning framework wit
object-level augmentor, which bene ts semi-supervised learning on both labeled and unl:
beled data for 3D object detection. We show that the existing methods using only glob:e
transformations is sub-optimal, and thus we propose to adopt both global and local augme
tations. To this end, we propose to learn an object-level augmentor that is jointly trained wit
the object detector in an adversarial learning manner, in which the objectness score from t
detector provides the guidance to the augmentor. In this way, our object-level augmentor
able to increase the variance within object points and thus boost the detector's capability
SSL. We conduct extensive experiments on the ScanNet and SUN RGB-D benchmarks,
which OPA achieves consistent performance gains against state-of-the-art approaches or
the settings with different ratios of labeled data.






