Learning Object-level Point Augmentor for Semi-supervised 3D Object Detection

Cheng-Ju Ho¹ Chen-Hsuan Tai¹ Yi-Hsuan Tsai² Yen-Yu Lin¹ Ming-Hsuan Yang³ ¹National Yang Ming Chiao Tung University ²Phiar Technologies ³University of California at Merced

Observation

- Existing 3D semi-supervised methods usually employ only global augmentation, but it's sub-optimal
 - It ignores the object-level data variance, which is crucial for the instance-level object detection task.
- >Apply augmentations to the point clouds within each object bounding box directly.
 - >Its performance depends on proper augmentation settings.

Compared with rotation, point displacement can enhance data variance while keeping object orientations.

Setting	Scanl	Net 10%	SUN RGB-D 5%	
Setting	mAP@0.25	mAP@0.5	mAP@0.25	mAP@0.5
Without Object-level Aug.	47.1	28.3	39.0	21.1
Pre-defined Object-level Aug. (scale, flip, rotation)	42.7	24.2	24.9	13.6
Pre-defined Object-level Aug. (displacement, range at 0.5%)	48.4	29.1	40.6	20.4
Pre-defined Object-level Aug. (displacement, range at 1%)	49.0	29.3	40.5	20.9
Pre-defined Object-level Aug. (displacement, range at 5%)	47.3	27.4	39.5	20.5

Object-level point augmentor

- Emphasize object instances rather than irrelevant backgrounds.
- Dynamically adjust the augmentation magnitude according to the detector's ability.
- After augmenting, making the augmented data more useful for object detector training.

Methodology

Adversarial learning strategy.

> With jointly pre-train a detector with an augmentor. The augmentor is optimized to generate proper augmented scene x_a , while the detector is derived to localize and recognize the augmented data accurately.

► Augmentation Objective.

Quantitative results on indoor datasets

 $\textbf{F} Augmented scene \textbf{x}_a \text{ should be more challenging.} } \\ \mathcal{L}_d(\textbf{x}_a^l, \textbf{y}_a^l) \geq \mathcal{L}_d(\textbf{x}_g^l, \textbf{y}_g^l)$

 $> x_a$ and x_g should be classified as the same class.

 $\succ \text{ Dynamical variable } \rho \text{ makes } \rho \mathcal{L}_d(\mathbf{x}_g^l, \mathbf{y}_g^l) \text{ be the upper bound } \mathcal{L}_d(\mathbf{x}_a^l, \mathbf{y}_a^l) \\ \mathcal{L}_A = \mathcal{L}_d(\mathbf{x}_a^l, \mathbf{y}_a^l) + \lambda |1 - \exp\left(\mathcal{L}_d(\mathbf{x}_a^l, \mathbf{y}_a^l) - \rho \mathcal{L}_d(\mathbf{x}_g^l, \mathbf{y}_g^l)\right)|$

 $\geq \rho$ is aware of objectness score and class probability.

$$ho = \max(1, \exp(\hat{\mathbf{y}}_{o} \cdot \sum_{c=1}^{C} \hat{\mathbf{y}}_{c} \cdot \mathbf{y}_{c}))$$

➢ Teacher-Student Framework in SSL.

>We initialize the student and teacher models from the pre-trained detector, and apply our object-level augmentor and asymmetric data augmentations to make this framework effective.

5% 10% 20% Model mAP mAP Dataset mAP mAP mAP mAP @0.25@0.5@0.5@0.5@0.25@0.2527.5±1.2 VoteNet [16] 27.9±0.5 10.8 ± 0.6 36.9±1.6 18.2 ± 1.0 46.9±1.9 SESS [36] NA NA 39.7±0.9 18.6 47.9±0.4 26.9

Qualitative results on the ScanNet Ground Truth OPA (ours) 3DIoUMatch

ScanNet	3DIoUMatch [29]	40.0 ± 0.9	22.5 ± 0.5	47.2 ± 0.4	28.3 ± 1.5	52.8 ± 1.2	35.2 ± 1.1
	OPA	41.9± 1.5	25.0±0.4	50.5±0.2	32.7 ±1.0	54.7±0.3	36.8± 0.8
	Gain (%)	1.9↑	2.5↑	3.3↑	4.4↑	1.9↑	1.6↑
	VoteNet [16]	29.9±1.5	10.5±0.5	38.9±0.8	17.2±1.3	45.7±0.6	22.5±0.8
	SESS [36]	NA	NA	42.9±1.0	14.4	47.9±0.5	20.6
SUN RGB-D	3DIoUMatch [29]	39.0±1.9	21.1±1.7	45.5±1.5	28.8±0.7	49.7±0.4	30.9±0.2
	OPA	41.6± 0.1	23.1± 0.5	47.2± 0.7	29.6± 0.8	50.8±1.0	31.5± 0.6
	Gain (%)	2.6↑	2.0↑	1.7↑	0.8↑	1.1↑	0.6↑

Source code:

