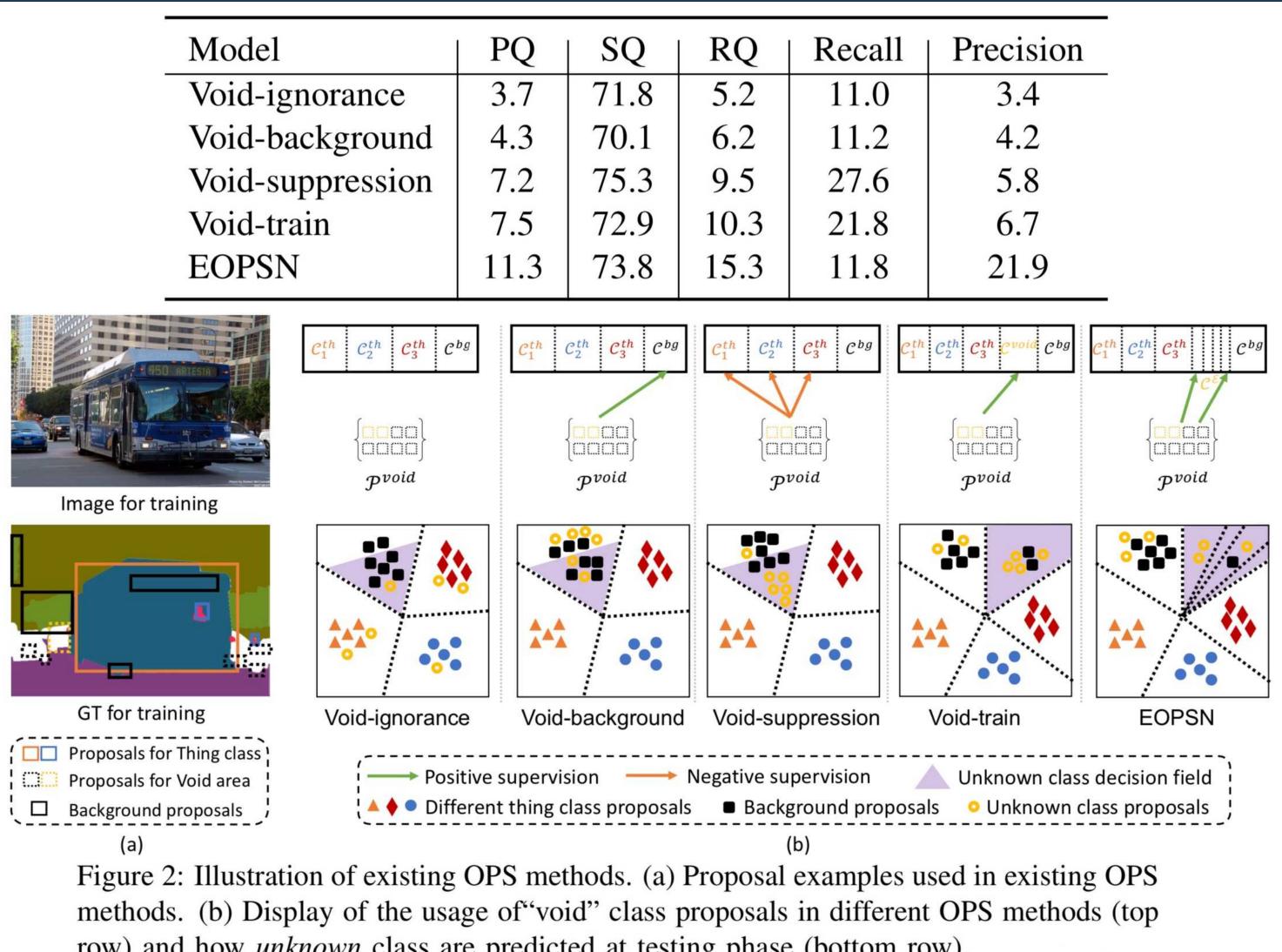


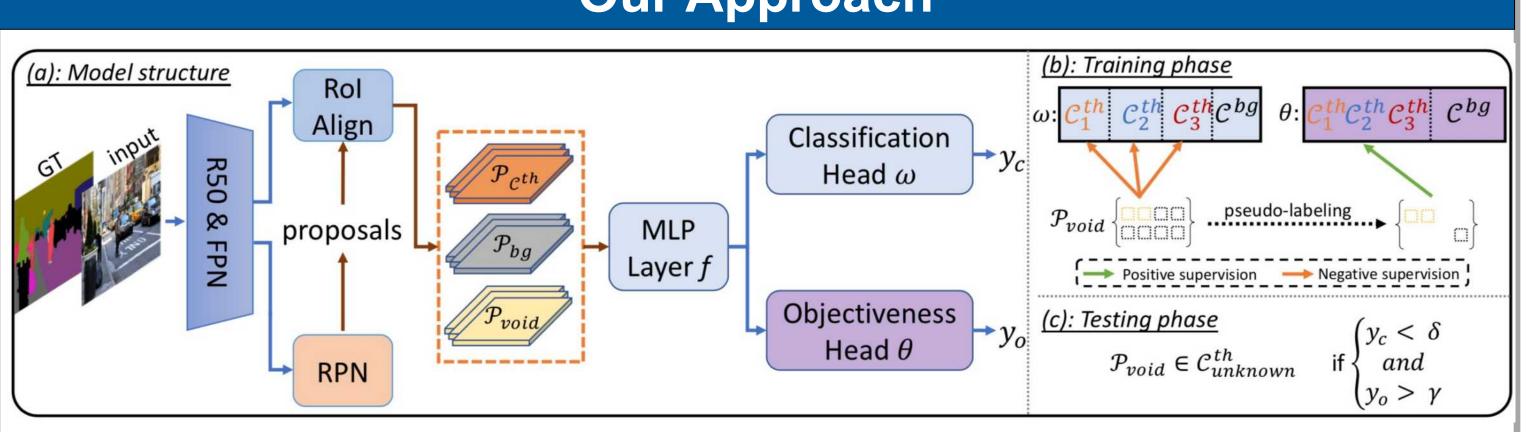
Background

- Panoptic segmentation in closed-set may not generalize to open-set cases.
- \succ Open-set panoptic segmentation (OPS) is challenging:
- The appearance of unknown class object is diverse and hardly to directly modelling unknown classes from the given training images.
- The given "void" area in training images is too noisy to provide effective supervisions.


Image for Training

GT for Training

Comparisons of Existing OPS Methods


Model	PQ	SQ	RQ	Recall
Void-ignorance	3.7	71.8	5.2	11.0
Void-background	4.3	70.1	6.2	11.2
Void-suppression	7.2	75.3	9.5	27.6
Void-train	7.5	72.9	10.3	21.8
EOPSN	11.3	73.8	15.3	11.8

row) and how unknown class are predicted at testing phase (bottom row).

Dual Decision Improves Open-Set Panoptic Segmentation Hai-Ming Xu¹, Hao Chen^{2,*}, Lingqiao Liu^{1,*}, Yufei Yin³ ¹The University of Adelaide ²Zhejiang University ³University of Science and Technology of China

Objective functions:

Classification head on known classes:

where w is the weight of classification head. $N_{\mathcal{P}_{would}}$ is the number of proposals except for those belonging to "void" class. $N_{\mathcal{P}_i}$ is the number of proposals in any specific *thing* class.

Suppression of known class classifiers on "void" class proposals

$$\min -\frac{1}{N_{\mathcal{P}_{void}}} \sum_{i=1}^{N_{\mathcal{P}_{void}}} \sum_{k \in \mathcal{C}^{\text{th}}} \log\left(1 - \frac{\exp\left(w_k^T f(\mathcal{P}_{void}^i)\right)}{\sum_{\{\mathcal{C}^{\text{th}}, bg\}} \exp\left(w_j^T f(\mathcal{P}_{void}^i)\right)}\right)$$

where $N_{\mathcal{P}_{void}}$ means the number of "void" class proposals. Objectiveness head:

$$\min \frac{-1}{N_{\mathcal{P}_{\overline{void}}}} \left(\sum_{i \in \mathcal{C}^{th}} \sum_{k=1}^{N_{\mathcal{P}_i}} \log \frac{\exp(\theta^T f(\mathcal{P}_i^k))}{1 + \exp(\theta^T f(\mathcal{P}_i^k))} + \sum_{l=1}^{N_{\mathcal{P}_{bg}}} \log \frac{1}{1 + \exp\left(\theta^T f(\mathcal{P}_{bg}^l)\right)} \right)$$

where θ is the weight of objectiveness head and $N_{\mathcal{P}_{bo}}$ is the number of background proposals.

Pseudo-labeling on objectiveness head:

$$\min \ \frac{-1}{N_{\mathcal{P}_{void}}} \sum_{i=1}^{N_{\mathcal{P}_{void}}} \mathbb{1}\left(\frac{\exp\left(\theta^T f(\mathcal{P}_{void}^i)\right)}{1 + \exp\left(\theta^T f(\mathcal{P}_{void}^i)\right)} \ge \delta\right) \log \frac{\exp\left(\theta^T f(\mathcal{P}_{void}^i)\right)}{1 + \exp\left(\theta^T f(\mathcal{P}_{void}^i)\right)}$$

where δ is the confidence threshold.

Our Approach

$$\log \frac{\exp\left(w_i^T f(\mathcal{P}_i^k)\right)}{\sum_{j \in \{\mathcal{C}^{\mathrm{Th}}, bg\}} \exp\left(w_j^T f(\mathcal{P}_i^k)\right)}$$

K Model	Known									Unknown					
	WIGHEI	PQ	SQ	RQ	PQ Th	SQ^{Th}	RQ^{Th}	PQ St	SQ St	RQ St	PQ	SQ	RQ	R	Р
	Supervised	39.4	77.7	48.4	45.8	80.7	55.4	29.7	73.1	38.0	-	-	-	-	-
	Void-supp.	38.0	77.0	46.7	44.8	80.6	54.1	28.3	71.7	36.1	6.7	76.2	8.8	39.9	4.9
5	Void-train	37.3	76.7	45.9	43.6	80.4	52.8	28.2	71.5	36.0	8.6	72.7	11.8	29.8	7.3
5	EOPSN	38.0	76.9	46.8	44.8	80.5	54.2	28.3	71.9	36.2	23.1	74.7	30.9	25.9	38.
	Ours	38.1	77.7	46.6	45.1	80.9	54.3	28.1	73.1	35.7	30.2	80.0	37.8	32.8	44.
10	Void-supp.	37.6	76.8	46.3	44.3	80.5	53.5	28.5	71.7	36.4	6.5	76.0	8.6	32.7	5.0
	Void-train	37.1	77.1	45.8	43.7	80.1	53.1	28.1	73.0	35.9	8.1	72.6	11.2	25.7	7.2
10	EOPSN	37.7	76.8	46.3	44.5	80.6	53.8	28.4	71.8	36.2	17.9	76.8	23.3	19.0	30.
	Ours	37.7	77.1	46.3	45.0	80.7	54.3	27.8	72.2	35.4	24.5	79.9	30.7	24.7	40.
	Void-supp.	37.5	75.9	46.1	45.1	80.6	54.5	28.2	70.2	36.1	7.2	75.3	9.5	27.6	5.8
20	Void-train	36.8	76.3	45.4	44.1	80.1	53.5	27.9	71.6	35.6	7.5	72.9	10.3	21.8	6.7
20	EOPSN	37.4	76.2	46.2	45.0	80.3	54.5	28.2	71.2	36.2	11.3	73.8	15.3	11.8	21.
	Ours	37.1	75.8	45.7	45.0	80.6	54.3	27.6	70.1	35.3	21.4	79.1	27.1	21.9	35.

Model	Known										Unknown			Unseen		
Woder	PQ	SQ	RQ	PQ Th	SQ^{Th}	$\mathbf{R}\mathbf{Q}^{\mathrm{Th}}$	PQ St	SQ St	RQ St	PQ	SQ	RQ	PQ	SQ	RQ	
Void-supp.	35.8	76.7	44.5	43.0	81.2	52.5	27.7	71.6	35.4	7.6	75.5	10.1	4.5	75.9	6.0	
Void-train	35.4	77.2	43.9	42.2	81.0	51.6	27.7	72.8	35.3	8.8	73.8	15.7	4.4	74.8	5.9	
EOPSN	35.7	76.6	44.7	43.2	81.1	52.7	27.8	71.4	35.6	23.0	74.6	30.8	0.4	80.3	0.5	
Ours	35.8	76.6	44.5	43.0	81.1	52.5	27.6	71.4	35.3	30.2	80.2	37.7	9.3	82.5	11.2	

(a) Input

(b) GT

Experimental Results

Table 2: Comparisons of open-set panoptic segmentation performance against the state-ofthe-art methods on MS-COCO val set with three known-unknown splits K(%) which denotes the ratio of unknown classes to all classes. Recall (R) and precision (P) of unknown objects are also presented for reference. The best results on unknown classes are bold highlighted.

Table 3: Comparisons of OPS performance on MS-COCO val set under the newly proposed zero-shot setting. The best results on unknown and unseen classes are bold highlighted.

Clas	ss of prominent object:
	Unknown: cow
	<i>Unseen</i> : fire hydrant
~	
	Unseen: refrigerator

Unseen: parking meter

(c) Void-supp.

(d) EOPSN