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Abstract

Fine-grained recognition intends to distinguish objects with similar visual signals
and has been a challenging problem in computer vision. Vision transformers (ViTs) have
recently led the trends of visual representations by a global self-attention mechanism,
and exhibit their potential in fine-grained related tasks. Yet, we find that the common
ViTs focus on all patches and aggregate spatial features using shift operation or down-
sampling, tending to overlook locally discernible features. In this paper, we propose a
novel scheme, named selective attention (SeA), as an alternative to regular self-attention
with higher efficiency and conciseness. Specifically, we progressively learn fine-grained
features in images by focusing the network on regions with high attention scores via a
multi-step training and inference strategy. Also, SeA can be viewed as a plug-and-play
module for various hierarchical architectures (e.g., ResNet, Swin) and significantly im-
proves the performance of existing backbones. Extensive experimental results on five
fine-grained benchmarks substantiate the effectiveness of our approach, e.g., new SOTA
on CUB-200 and Nabird with an accuracy of 93.0% and 93.9%. Code will be made
available at link.

1 Introduction

Fine-grained visual classification differs from traditional classification tasks and aims to
identify different subclasses within the same broad class. As the differences in objects
within such subclasses are often small, this also poses a greater challenge to fine-grained
classification. Previous works on fine-grained classification have been devoted to locating
the distinguishing parts to extract the fine-grained features. Current localization methods
can be broadly classified into the following two types: (1) localization methods based on
detection or segmentation (2) localization methods based on attention machine.

In detection or segmentation based localisation methods, most of the early work [13, 26,
27] used manually annotated anchors to extract fine-grained features. However traditional
localisation methods require dense manual annotations for training, which is labour intensive
work and not conducive to the application of fine-grained classification in life. As a result,
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a large number of weakly supervised fine-grained works have emerged, where only image-
level labels are used. The main approaches [9, 12, 28] are to generate a large number of
proposal parts and then filter regions by clustering or heuristic algorithms. However those
approaches can’t ensure localisation to fine-grained regions and there are lack of interaction
between the localised regions.

In view of this, many works [8, 14, 29] have turned to a localisation approach based
on the attention mechanism. Attention mechanism, similar to human perception, selectively
focuses on the salient parts of an object or scene. Specifically it works by performing a
weighted summation of different patches to achieve a localisation-like effect. This is a good
way of modelling the global picture, but it also raises the question that are all patches we
need? Although attention learns weights for the different patches to highlight the important
ones, the useless ones are also counted. To solve this problem, further work [3, 10, 25]
proposed to select patches first, and then perform attention calculation within the selected
patches. Such approaches often require the design of a complex token selected module,
which increases the complexity of the model and lacks interpretability.

In summary, previous works have been limited by two general problems: (1) The global
self-attention contains a large amount of redundant and useless information. (2) The token
selected module is accompanied by complex design and inefficient computation.

In order to solve the appeal problem, we propose a simple and efficient selective atten-
tion. SeA does not weight the global tokens to sum up, but only calculates some tokens with
high attention score. This method does not introduce additional calculation, and the selective
principle is based on the attention map generated in the calculation process. In addition, we
also borrowed the progressive multi granularity training strategy [7], and improved on it by
exploiting the difference between inference and training, so as to promote the network focus
on the fine-grained part. We call this method DIT. The main contributions of this paper are:

• We propose a novel attention mechanism, namely selective attention, which unifies
selected module and attention mechanism without introducing extra computational
effort. And We build a plug-and-play FGVC Head module with this core, applying it
to different frameworks to verify the effectiveness for fine-grained feature extraction.

• A more optimal solution named DIT is proposed based on the Progressive Multi-
Granularity Training strategy as a generic strategy during training and inference, and
its effectiveness is demonstrated by applying it to different backbones in different
benchmarks.

• Extensive experiments on fine-grained visual representation tasks suggest the superi-
ority of proposed methods. For instance, we achieved a new SOTA of 93.0% on the
CUB-200, 93.9% on the Nabird.

2 Related Work

2.1 Backbone
As AlexNet [17] achieving the 2012 ImageNet [4] classification championship, CNNs have
once become the most popular feature extraction method within the past few years. A large
number of deep neural networks based on CNN have emerged. He et al. [11] proposed
ResNet with residual connections, which solves the problem of gradient disappearance or

Citation
Citation
{Ge, Lin, and Yu} 2019

Citation
Citation
{He and Peng} 2017

Citation
Citation
{Zhang, Wei, Wu, Cai, Lu, Nguyen, and Do} 2016

Citation
Citation
{Fu, Zheng, and Mei} 2017

Citation
Citation
{Ji, Wen, Zhang, Du, Wu, Zhao, Liu, and Huang} 2020

Citation
Citation
{Zheng, Fu, Zha, and Luo} 2019

Citation
Citation
{Chou, Lin, and Kao} 2022

Citation
Citation
{He, Chen, Liu, Kortylewski, Yang, Bai, and Wang} 2022

Citation
Citation
{Wang, Yu, and Gao} 2021

Citation
Citation
{Du, Chang, Bhunia, Xie, Ma, Song, and Guo} 2020

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016



Y. CHEN, H. WANG, P. PAN: SELECTIVE ATTENTION 3

Query Attention Region

(a) (b) (c) (d)ours
Figure 1: An overview of different attention mechanism. (a) is the standard global self-
attention. (b) is the cross self-attention that computes in a cross shape.(c) is the shift-window
attention and only perform self-attention in each window. We propose SeA given in (d)
which can select part tokens adaptively by attention score.

gradient explosion in deep neural networks. As the network deepens, the number of param-
eters inevitably increases. In view of this, Howard al. [1] proposed a lightweight MobileNet
that uses depthwise convolution instead of vanilla convolution, greatly reducing the parame-
ters of the convolution operation and still achieving a competitive performance. Later Tan et
al. [22] proposed an efficient EfficientNet that balances the width and depth of the network
with the resolution of the input image to achieve higher accuracy with a limited number of
parameters.

It was not until the excellent performance of ViT [6], that lots of works turned to the
transformer. ViT divides images into different patches and adds a classification token with
a learnable position embedding, achieving an accuracy of 90.7% on the ImageNet after a
large amount of data pre-training. The Swin transformer [18] was proposed to reduce the
quadratic complexity to linear and achieved SOTA on a variety of downstream tasks. Inter-
estingly, the proposal of Convnext [19] brought a renewed focus on CNNs at a time when
the transformer was rapidly evolving. The main body of Convnext is much like ResNet in
that it references the block numbers and normalization methods of the transformer and uses
depthwise convolution to achieve top1 accuracy on ImageNet.

2.2 Attention Mechanism

With the rise of the transformer, there has also been an explosion of improvements on the at-
tention mechanism, of which the main attention variants are briefly shown in Fig1. First is the
standard self-attention in Fig1.(a), which is a strategy for modeling the global by weighted
summation. To reduce the computational complexity of self-attention, two main variants of
attention are proposed:(1)hand-craft self-attention region as shown in Fig1.(b). (2)window-
based self-attention as shown in Fig1.(c). Cross shape self-attention was proposed in [5],
which artificially delineated attention zones as crosses. While shift window attention divides
the image into non-overlapping windows to calculate attention within the window, then move
the window to recalculate attention. Neither window-based attention nor hand-craft attention
region can avoid global information loss, while global self-attention contains too much use-
less information. Our proposed SeA solves the appeal problem by extracting the key patch
information better, although not reducing the computational complexity. Our work is largely
inspired by self-attention.
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Figure 2: Overall structure diagram of the model with DIT strategy. The left part represents
the training process of the model using the DIT strategy, and the right part shows the structure
of our proposed FGVC Head. The stage can be any hierarchical down sampling network
model, E.g.Resnet,Convnext,Swin transformer.

2.3 Fine-grained Classification
Identifying the distinguished parts is the most vital step in fine-grained classification. Lo-
calization methods can be broadly divided into those based on segmentation or detection
[9, 12, 26, 27, 28] and those based on attention mechanisms. Our work falls into the latter
paradigm. In this paradigm, [8] first applied attention to fine-grained recognition. Specifi-
cally, it uses an iterative visual attention model to select a series of attention regions, using
previous predictions as a reference to generate a regional attention map iteratively. [3]
proposed a generic feature selection module that keeps the features with classification prob-
ability above a threshold. [10] integrates the original attention weights into the attention
map to guide the network to select distinguishing patches and calculate the relationships be-
tween them. Our work unifies part selected and attention mechanism and proposes a new
paradigm, which significantly simplifies the fine-grained classification steps.

3 Approach

3.1 Multi-stage Training and Inference
In simple terms, DIT is a multi-stage training and inference strategy. The feature map of
the lower stage is first trained, and then gradually progresses to the higher stage. As the
network progresses to the higher stage, the focus of the model shifts from local details to
global structural discriminative information, rather than learning all the granular information
simultaneously. Specifically, the overall structure of DIT is shown in the left part of Fig2.
After stage 1, the low-level representation of image is connected to a FGVC Head to obtain
the fine-grained feature, and calculate the cross entropy loss with the ground truth as follows:

Fi = head
(
stagei

(
inputi−1

))
(1)

prei = softmax(linear(Fi)) (2)
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lossi =−∑(GT log prei +(1−GT ) log(1− prei)) (3)

Fn+1 = Concat(F1,F2 . . . . . .Fn) (4)

Where i ∈ (1,2, . . . . . . ,n) denotes the number of stages of backbone; Fi denotes the final fea-
ture vector and prei denotes the probability distribution of each category after softmax.

Then the parameters of stage1 and head1 are updated according to the backward of loss1,
completing the training step1. At the same time, the feature map from stage1 is downsampled
through stage2 and the appeal operation is repeated. After n stages, the features of each stage
are cancated to obtain a feature that fuses multi-stage as Eq4, and then backward is done
again to update the parameters of the whole network. For the specific application, we will
select the last s stages for training instead of all of them participating in the training. The
stages are: { stage n− s+1, stage n− s+2, . . . . . . , stage n}.

For the inference stage, we similarly integrate the prediction for the last n stages, and it
is worth noting that here both n and s are adjusted as hyperparametric. We believe that if the
predictions of low stages are integrated it may suppress the classification effect because the
classification of the low stages is not very good in the first place. Our proposed DIT discusses
the difference between training and inference in more depth, separating the training stage
number s and inference stage number n as two hyperparametric where n ≤ s. We explore in
detail the optimal inference stages for different training stages, and the optimal number of
training stages and inference stages for the global case.

3.2 FGVC Head

The overall idea of the FGVC Head is to extract fine-grained and coarse-grained features of
the image separately. Specifically, to facilitate the subsequent processing, we first transform
the feature map by a 1×1 convolution to adjust the feature map of different stages to a uniform
dimension. Next, we interact with the information around the different channels and spaces
of the feature map through a 3 × 3 convolution. Referring to the convblock design paradigm,
batch normalization and activation function relu are added after the convolution to improve
the training speed and non-linearity of the network. After pre-processing the feature map, we
extract its fine-grained features and coarse-grained features in parallel through two branches
as shown in the right part of Fig2. For coarse-grained feature extraction, we do not need
the information of each point of the feature map, but only the position of the point with the
largest response. We use global max pooling to ignore regions with low scores. For fine-
grained feature extraction, we refer to ViT’s design idea of adding a learnable FGVC token
as a fine-grained feature. We let it do selective attention with other tokens and learn a feature
that contains local fine-grained information. Finally, we stitch the two granularity features
together and pass it through a feed forward network to obtain the classification result.

The main advantage of our FGVC Head is that it extracts coarse-grained features and
fine-grained features for the same feature map in parallel. For fine-grain feature extraction,
there is no additional localization sub-network for token selection, which greatly simplifies
the steps of fine-grain feature extraction. Overall, our proposed FGVC Head is a simple,
efficient and plug-and-play fine-grain classification head.
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3.3 Selective Attention
The original design motivation for SeA was that are all patches we need for computing self-
attention? That is clearly NO. For example, the background part of an image often contain
a lot of useless information. These will affect our feature extraction of the subject and play
a negative role. Although all tokens are given a relevance weight when calculating self-
attention to reduce the impact of useless tokens, negative tokens are still taken into account
in a low weight. For this reason, our SeA is born to incorporate only the information of
the positive tokens and discard the negative tokens. This design idea is similar to fine-grain
feature extraction in FGVC, so we apply it to FGVC as a new fine-grain feature extraction
method.

SeA is used to selectively compute the key tokens by masking others with low attention
scores. Specifically, borrowing from multi-head self-attention, features are first mapped
to Q, K and V . Then the dimensions are divided equally among multi-heads, prompting
features within different heads to learn different semantic information. For a single head,
we first compute the matrix multiplication of Q and KT to obtain an n×n attention score
mat. We define scorei, j as the relevance of the ith token to the jth token. For the ith row of
the attention score mat, we select the high relevance scores to keep them and the other low
relevance scores set to zero. In the specific implementation process, we first sort the index
of the ith row of score in descending order and record the (n× select ratio)th index. We find
the watershed score by selected index and do not disrupt the ordering of the original score.
Then compare scorei, j with the watershed score, those greater than it are kept and those less
than are set to zero as follow:

score = Q ·KT/
√

dk (5)

index = argsort(− score i) [ ratio ×n] (6)

score i = where ( score i > scorei[ index ], score i,0) (7)

where i ∈ (1,2, . . . . . . ,n) denotes the number of all tokens; dk denotes the dimension in a
single head of K; ratio controls the select number.

We then normalize the newly obtained attention score by a softmax function. It is worth
noting that we perform softmax on the attention score after the selection to strengthen the
role of the selective tokens. The normalized attention score is then weighted and summed
over V by calculating the matrix multiplication of the attention score and V . The above is the
SeA calculation within a single head. We do the calculation within each head individually
and then stitch together the output of all the heads as the final select attention output as
follows:

atth = softmax(score) ·V (8)

att = concat
(

att1,att2, · · · · · · ,atth
)

(9)

4 Experiment

4.1 Experiment Setup
Dataset. For this experiment, we used five popular fine-grained benchmarks to demonstrate
the generality of our model, including CUB-200 [24], Nabird [23], FGVC Aircraft [20],
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Stanford Cars [16], and Stanford Dogs [15].
Implementation details. To be fair for comparison with other methods, the parameters of
our implementation are set in line with most methods. First, we resize the image to 550×550
size, then random crop to 448×448 size, and use the centercrop in the test with the same
size. We just use the random horizontal flip as the data augmentation. During training, the
cosine decay is used; The weight decay is set to 0.0005; SGD is used as the optimizer, and
the batch size is set to 16; A total of 100 epochs are trained. It is worth noting that we set
different initial learning rates for different parameters. For backbone, we set 0.0001 as its
initial learning rate, and for FGVC Head we set 0.001. We aim is to fine-tune the weighting
of the backbone and increase the weighting variation of the FGVC Head. For all backbones
we loaded pre-trained weights on ImageNet 21k. All experiments are completed on a single
Nvidia GeForce RTX 3090, and the Pytorch toolbox is used as the main implementation
substrate. If not otherwise specified, all experiments were parameterized as shown above.

Table 1: Comparison of various methods on five benchmarks, namely CUB-200, Nabird,
Stanford Car, FGVC Aircraft, and Stanford dog.

Method Backbone CUB-200 Nabird Car Aircraft Dog
API-Net [30] Densenet-161 90.9% 88.1% 95.3% 93.9% 90.3%
PMG [7] Resnet-50 89.6% - 95.1% 93.4% -
FFVT [25] ViT-B_16 91.6% - - - 91.5%
TransFG [10] ViT-B_16 91.7% 90.8% 94.8% - 92.3%
PIM [3] Swin-T 92.8% 92.8% - - -
CAL [21] Resnet-101 90.6% - 95.5% 94.2% -
CAP [2] Xception 91.8% 91.0% 95.7% 94.9% -
SeA(ours) - 93.0% 93.9% 95.3% 94.4% 90.9%

4.2 Compare With State-Of-The-Art Approach
We compared the performance of SeA with some other state-of-the-art methods on five pop-
ular fine-grained benchmarks, and the results are shown in Table 1. Overall, most previous
methods have only shown SOTA or competitive performance on a portion of benchmarks and
very few have been experimentally analysed on the full benchmarks, e.g., PIM is a previous
SOTA on CUB-200 and Nabird, but it has no relevant experiments on other benchmarks;
CAP is a SOTA method on Stanford Car and FGVC Aircraft, but it does not work very well
on CUB-200 and Nabird. Our approach achieves the highest performance on the CUB-200
and Nabird with 93.0% and 93.9%, and very competitive performance on the Stanford Car,
FGVC Aircraft, and Stanford Dog.

Specifically, The previous best method on CUB-200 and Nabird was PIM, which achieved
92.8% performance on both benchmarks. However PIM uses a supervised approach to select
the fine-grained token, which is not suitable for model scaling because of the fusion of mul-
tiple losses. In contrast, our SeA improves 0.2% on CUB-200 and 1.1% on Nabird compared
with the PIM, and we use only one type of loss as the direction of model optimization, which
is more scalable.

In the Stanford Car and FGVC Aircraft, CAP achieves the best performance on them
based on anchors. While our approach does not divide any anchors in advance and only
extracts fine-grained features through feature maps, which greatly simplifies the fine-grained
classification step but is slightly less performance than CAP. We believe that is because the
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shape and pose of cars and aircrafts are more fixed and the features that need to be extracted
focus on texture. That makes these benchmarks more friendly to the anchor based method.
However, for the birds, its shapes and poses are more variable so that we need to extract
general features. At this point the anchor limits the expression of the pose, whereas our SeA
does not require any anchors to determine the fine-grained part, and is more suitable for the
general case. For the Stanford Dog, TransFG achieves top-1 accuracy with 92.3%. TransFG
designs a token selected module first, and then does self-attention in these tokens. Although
our method is inferior to TransFG and FFVT on this benchmark, we unify the selected mod-
ule and attention mechanism. And we have a significantly higher overall performance than
the other methods.

Table 2: The accuracy under different n and s in CUB-200 with Swin-B. s denotes the number
of last stages for training; n represents the number of last stages for inference.

s
n

0 1 2 3

1 92.5% 92.4% - -
2 92.6% 92.8% 93.0% -
3 92.6% 92.4% 92.5% 92.4%

Table 3: The accuracy of different selection ratio in CUB-200 with Swin-B.
Select Ratio 0.1 0.3 0.5 0.7 0.9 1.0

Accuracy 92.7% 92.8% 93.0% 92.5% 92.6% 92.6%

4.3 Ablation Study
Hyperparametric analysis. For the DIT strategy, we conducted adequate experiments on
the training stage number s as well as the inference stage number n. The specific experi-
mental results are shown in Table2, where n ≤ s. It can be seen that it achieves the highest
accuracy with 93.0% when s = 2 and n = 2. The optimal results can be achieved when we
progressively train the last two stages and integrate the last two stages when inferring. More-
over, when s = 1 and s = 3, both are not optimal when the training stage number is directly
taken as the inference stage number, which also proves our conjecture for the proposed DIT.

The select ratio is the most important and only hyperparametric in SeA, which represents
the number of tokens we want to select. Since each stage has a different number of tokens,
we use a ratio to unify the representation of each layer. The SeA turns into self-attention
when select ratio = 1. As shown in Table3, the performance reaches a maximum of 93.0%
when select ratio = 0.5. This also proves the motivation of SeA that not all tokens have a
positive effect on classification. Interestingly, when we keep reducing the select ratio, the
accuracy decreases but is still higher than when the self-attention, demonstrating that fusing
global information is not as useful as fusing some of the key patches.

Influence of DIT and FGVC Head. The performance of adding DIT strategy and FGVC
Head on different backbones is shown in Table4. In each backbone, the first row shows the
original performance of the model, the second row shows the performance after adding the
DIT strategy, and the third row shows the performance after adding the FGVC Head to the
DIT strategy. Our method improves the performance of the original model by more than 2%
in most cases. And It is even greater than 4% improvement on the aircraft for Swin-B, and
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Table 4: Ablation study on DIT and FGVC Head in five datasets with different backbone.
Backbones Method CUB-200 Nabird Car Aircraft Dog

Original 84.5% 84.3% 91.5% 90.3% 86.1%
Resnet-50 +DIT 86.8% 86.5% 94.2% 90.9% 87.0%

+FGVC Head 88.4% 87.5% 94.5% 92.1% 88.2%
Original 91.7% 91.9% 93.0% 91.0% 89.9%

Convnext-B +DIT 91.9% 92.4% 94.3% 91.5% 90.3%
+FGVC Head 92.5% 92.7% 95.1% 93.2% 90.9%

Original 92.2% 92.8% 93.7% 90.3% 89.3%
Swin-B +DIT 92.6% 93.1% 94.9% 93.3% 89.6%

+FGVC Head 93.0% 93.9% 95.3% 94.4% 90.0%

have 0.7% in the worst case. The extensive experiments demonstrate that our method is not
only effective, but also versatile.

Table 5: Ablation study on SeA in FGVC Head in five datasets with different backbone.
Backbones Method CUB-200 Nabird Car Aircraft Dog

Resnet-50 Self-Attention 87.7% 87.4% 94.3% 90.4% 88.0%
SeA 88.4% 87.5% 94.5% 92.1% 88.2%

Convnext-B Self-Attention 92.2% 92.6% 94.5% 93.0% 90.4%
SeA 92.5% 92.7% 95.1% 93.2% 90.9%

Swin-B Self-Attention 92.6% 93.2% 94.9% 93.5% 89.3%
SeA 93.0% 93.9% 95.3% 94.4% 90.0%

Influence of Selective Attention. Further to the ablation study in Table4, we focus on
the role of SeA in the FGVC Head. We compare it with self-attention, and the results are
shown in Table5. For most cases, we can obtain a large improvement by simply replacing
self-attention with SeA. In the FGVC Aircraft under Resnet-50, we achieve the highest im-
provement of 1.7%, while in the Nabird it was only 0.1%. We believe this is due to the high
resolution of the Nabird, where a random crop of 448 × 448 would lose a lot of information.
Once We crop the image to 672×672 in Swin-B, it achieves a boost of 0.7%. It is worth
noting that these improvements are only stacking one layer of SeA.

4.4 Qualitative Analysis

We show the visualization results of proposed SeA and standard self-attention on CUB-200
in Fig3. In the first row we give the visualisation of the attention map under SeA. As a
comparison, we show the results of the standard self-attention visualisation in the second
row. As can be seen, the visualization of self-attention is coarser and the parts that are
focused on are more scattered. It even focuses on some background parts. Our selective
attention, on the other hand, focuses more on objects, such as the head or beak of a bird.
This is in line with our motivation for proposing SeA.
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Figure 3: Visualization results of attention maps trained under different attention mecha-
nisms on CUB-200. The first row represents the visualization of selective attention, the
second row represents the standard self-attention.

5 Conclusion

In this work, we propose a novel attention mechanism SeA, which adaptively selects high
score tokens based on an attention map. In addition, we exploit a general training inference
strategy DIT, which is trained in a stepwise progressive manner and integrates predictions
from multiple stages during inference. The method substantially improves the existing back-
bones and achieves the state-of-the-art performance on CUB-200 and Nabird and shows very
competitive performance on the other three benchmarks.

SeA achieves satisfactory results for fine-grained visual classification, and we are looking
forward to its future performance on other tasks. We plan to build a backbone with SeA as
the core to test its performance on small target detection. In addition, selective attention is
still quadratic in complexity, which is a future direction for improvement.
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