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Abstract
With the prevalence of image editing techniques, users can create fantastic synthetic

images, but the image quality may be compromised by the color/illumination discrep-
ancy between the manipulated region and background. Inharmonious region localization
aims to localize the inharmonious region in a synthetic image. In this work, we at-
tempt to leverage auxiliary style feature to facilitate this task. Specifically, we propose
a novel color mapping module and a style feature loss to extract discriminative style
features containing task-relevant color/illumination information. Based on the extracted
style features, we also propose a novel style voting module to guide the localization of
inharmonious region. Moreover, we introduce semantic information into the style voting
module to achieve further improvement. Our method surpasses the existing methods by
a large margin on the benchmark dataset.

1 Introduction
With the wide application of photography and editing technology, people can easily cre-
ate marvellous synthetic images with common image editing operations (e.g., copy-paste,
appearance adjustment). However, one serious problem of synthetic images is that the
manipulated region may have inconsistent color and illumination characteristics with the
background (see Fig. 1), making the whole image inharmonious and unrealistic. The in-
harmonious region localization task [21] aims to localize the inharmonious region, after
which users can manually adjust the inharmonious region or utilize image harmonization
techniques [8, 31] to harmonize the inharmonious region, yielding the images with higher
quality and fidelity. Therefore, inharmonious region localization is indispensable for blind
image harmonization [11], in which the inharmonious region mask is unavailable.

The first method on inharmonious region localization is DIRL [21], which mainly fo-
cuses on the backbone design to fuse multi-scale features and suppress redundant infor-
mation, ignoring critical information related to color and illumination statistics, which is
actually the essence of this task. Recent work MadisNet [22] transforms the image to an-
other color-space to magnify domain discrepancy. Different from previous works, we aim to
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Figure 1: Examples of inharmonious images (1st row) and their associated masks (2nd row).

extract style features containing task-relevant color and illumination information with a style
encoder, to help localize the inharmonious region. By dividing the image into inharmonious
region and harmonious (background) region, we enforce intra-region coherence and inter-
region divergence using a style feature loss, by pulling close the pixel-level style features
within the same region while pushing apart those across different regions. Unlike the com-
plex color mapping model in MadisNet [22], we design a simple yet effective color mapping
module to manipulate the input image to help extract more discriminative style features.

To fully exploit the potential of the pixel-level style features extracted from the style en-
coder, we propose a novel style voting module and insert it into each decoder stage. Each
decoder stage produces an auxiliary inharmonious region mask which is used to select har-
monious pixels as voters. These voters need to vote for the pixels with similar style features.
For each pixel, the total score it receives represents its probability of being harmonious. Fur-
thermore, considering that semantically similar regions usually provide more reliable clues,
we include extra semantic information to calculate weights, which are assigned to the scores
given from each voter to each pixel. Finally, the weighted total scores of all pixels form the
voting score map, which serves as the guidance for the next decoder stage.

In summary, our whole network consists of a style encoder and a UNet structure, which
are linked together by style features. A color mapping module is placed in front of style en-
coder to help extract better style features. A style voting module leverages the style features
to produce a style voting map to guide the UNet decoder. Because the semantic information
in style voting module is expensive and optional, we refer to our base model without semantic
information as AustNet (Auxiliary Style feature) and the enhanced version with semantic in-
formation as AustNet-S. Following [21], we conduct experiments on the benchmark dataset
iHarmony4 [8] and our method outperforms the state-of-the-art method MadisNet [22] by a
large margin. Specifically, we improve the AP from 85.86% to 92.01% with our AustNet
and to 93.01% with our AustNet-S compared with the SOTA results. Our main contributions
include:
•We design a style encoder with a simple color mapping module to extract discriminative

style feature to facilitate inharmonious region localization.
• We propose a novel style voting module based on extracted style features to provide

guiding information for the decoder.
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•We introduce semantic information into the weighting scheme in our style voting mod-
ule, which can achieve further improvement.

2 Related Work

2.1 Image Manipulation Detection
Image manipulation detection aims to detect and localize the manipulated or tampered im-
age, which is somewhat similar to inharmonious region localization. In image manipula-
tion detection, manipulation operations usually contain copy-move, removal, inpainting, and
splicing. Traditional image manipulation methods heavily rely on prior information of ma-
nipulated images like noise patterns [23, 25] and JPEG compression artifacts [4, 5, 20].
Recently, deep learning approaches tackle the image manipulation detection task by com-
paring local patches [2, 27, 29], extracting forgery features [3, 33, 36, 39], and adversarial
learning [18]. However, the discrepancy between color or illumination statistics, which is the
main focus of inharmonious region localization, is not specifically studied in these methods.

2.2 Image Harmonization
Image harmonization [1, 6, 8, 10, 14, 15, 31] aims to adjust the foreground of a composite
image in terms of color and illumination characteristics, to make the foreground compati-
ble with the background, which can be deemed as a successor task of inharmonious region
localization. Tsai et al. [31] proposed the first convolutional neural network for image har-
monization. A spatially separated attention module S2AM was proposed in [11] to process
the features of foreground and background differently. Domain translation was adopted in
[8, 9] to translate the inharmonious foreground to the background domain. Images are de-
composed into illumination map and reflectance map in [13, 14] to tackle the harmonization
problem. Semantic information was utilized in [30] to assist with the harmonization process.

Although image harmonization methods have shown impressive performance, most of
them require the ground-truth foreground mask, which are not always available in real-world
applications. For blind image harmonization without provided foreground mask, S2AM pre-
dicts the inharmonious foreground mask as an auxiliary task, but it is not the main focus
and the quality is very low. Therefore, the importance of inharmonious region localization is
significant and the quality of the predicted mask is crucial for blind image harmonization.

2.3 Inharmonious Region Localization
Inharmonious region localization aims to localize the inharmonious region which is incom-
patible with the background due to distinctive color and illumination statistics. DIRL [21] is
the first method working on inharmonious region localization, which develops an effective
way to merge multi-scale features and use mask guided attention module to localize the in-
harmonious region. However, the discrepancy about color and illumination information was
not fully exploited in [21]. MadisNet [22] uses HDRNet [12] to map the input color space
to magnify the domain discrepancy, while we propose to use a simple linear color mapping
module to better extract style features. Moreover, we leverage the style features in two as-
pects, which has never been explored before. We are also the first to introduce semantic
information into inharmonious region localization task.
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Figure 2: Our network structure is comprised of a style encoder and a UNet [28] structure.
We insert a color mapping module in front of style encoder to help extract better style features
FFFsty. The style voting module takes in FFFsty, the semantic features FFFsem from pretrained
segmentation network (e.g., OCRNet [37]), and the auxiliary inharmonious region mask
M̂MM

(k)
from each decoder stage, producing a style voting map SSS(k).

3 Methodology

Given a synthetic RGB image IIIRGB, our goal is estimating a binary mask M̂MM to localize the
inharmonious region. As shown in Fig. 2, our whole framework is comprised of a UNet [28]
and a style encoder. For UNet, we adopt ResNet34 [16] as the encoder, which takes the RGB
image IIIRGB as input and extracts multi-scale feature maps. For the style encoder, we first
convert RGB image IIIRGB to YUV image IIIYUV (see Sec 3.1), and then apply a color mapping
module to map it to a new color space that allows us to extract more discriminative style
features FFFsty.

In the UNet decoder, each decoder stage predicts an auxiliary inharmonious region mask.
Moreover, we insert a style voting module after each decoder stage to guide the mask esti-
mation in a coarse-to-fine manner and output the final mask M̂MM. By taking the k-th decoder
stage as an example, its output inharmonious region mask M̂MM

(k)
and the style features FFFsty are

sent into the style voting module to produce a voting score map SSS(k). Additionally, we merge
the multi-scale features from UNet encoder with the multi-scale features from style encoder
via concatenation and 1× 1 convolution, leading to aggregated encoder features. Then, the
voting score map SSS(k) is concatenated with aggregated encoder features and delivered to the
next decoder stage. Finally, the last decoder stage outputs the final mask M̂MM. Next, we detail
our style encoder in Sec. 3.1 and style voting module in Sec. 3.2.

3.1 Style Encoder

We adopt ResNet34 [16] as the backbone of style encoder to extract multi-scale features. We
refer to the feature map from the last layer as style feature map, which contains task-relevant
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color and illumination information. We first introduce the loss to regulate the style features,
and then introduce the color mapping module which can help extract better style features.

3.1.1 Style Feature Loss

The extracted style feature map FFFsty is expected to contain task-relevant color and illumi-
nation information, which could distinguish the inharmonious region from the background.
Therefore, the main goal of style feature loss is to enlarge intra-region coherence and inter-
region divergence. Specifically, we use sinter to denote the average cosine similarity be-
tween pixel-level style features across different regions (inharmonious region and harmo-
nious region), and sintra to denote the average cosine similarity between pixel-level style
features within the same region (either inharmonious or harmonious region). By denoting
the ground-truth inharmonious region mask as MMM, we define a set of inter-region pixel pairs
Pinter = {(p1, p2)|Mp1 6= Mp2}, in which p is a 2D position and Mp is the p-th entry in MMM.
Similarly, we define a set of intra-region pixel pairs Pintra = {(p1, p2)|Mp1 = Mp2}. By us-
ing cos(·, ·) to denote the cosine similarity between two feature vectors, sinter and sintra are
calculated as follows,

sinter =
1

|Pinter| ∑
(p1,p2)∈Pinter

cos(FFFsty
p1
,FFFsty

p2
), sintra =

1
|Pintra| ∑

(p1,p2)∈Pintra

cos(FFFsty
p1
,FFFsty

p2
). (1)

We adopt the triplet loss `sty to enforce sinter to be smaller than sintra by a margin m:
`sty = max(sinter− sintra +m,0), where m is set to 0.5 via cross-validation. In this way, we
pull close the pixel-level style features within the same region while pushing apart them
across different regions.

3.1.2 Color Mapping Module

To extract more discriminative style features, we insert a simple color mapping module in
front of the style encoder, which converts the input image to another color space using linear
color transformation. By jointly training color mapping module and style encoder supervised
by the style feature loss, the intra-region coherence and inter-region divergence could be
enlarged in the new color space.

Prior to using our color mapping module, we first convert the input RGB image IIIRGB ∈
RH×W×3 to a YUV image IIIYUV ∈RH×W×3. Compared with the correlated RGB color space,
YUV is a decorrelated color space, in which the luminance channel (Y channel) encodes
the intensity of light and the chrominance channels (U, V channels) encode the color in-
formation. Since the inharmony is caused by color/illumination discrepancy, a YUV image
may exhibit the discrepancy in a better way. Moreover, we can also transform each channel
independently in the decorrelated color space.

Our color mapping module applies a simple convolutional block (3×3 and 7×7 convo-
lutions) to the input YUV image to produce linear transformation parameters PPP = [AAA,BBB] ∈
RH×W×6, where AAA ∈ RH×W×3 and BBB ∈ RH×W×3. The linear color transformation is both
position-specific and channel-specific. Formally, the value IYUV

c,p in the c-th channel at 2D
position p of IIIYUV will be mapped to a new value in the following way:

Îc,p = Ac,p× IYUV
c,p +Bc,p, (2)
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Figure 3: Details of the style voting module. The left part shows constructions of style
similarity matrix VVV sty, harmonious weight matrix M̂MM

(k)
, and semantic similarity matrix WWW sem.

The right part illustrates calculations of the final voting score S(k)p1 for a specific pixel in SSS(k).

where Ac,p and Bc,p are the transformation parameters corresponding to the channel c and
2D location p. After the mapping process, we can get an image ÎII ∈RH×W×3 with each entry
being Îc,p. Then, the style encoder takes in ÎII and outputs a style feature map FFFsty ∈Rh×w×C,
in which h = H

8 and w = W
8 .

3.2 Style Voting Module

Based on the extracted style feature map FFFsty ∈ Rh×w×C, we design a novel style voting
module, which produces a voting score map to indicate the harmonious pixels. We insert it
after each decoder stage. By taking the k-th decoder stage as an example, we use its output
inharmonious region mask to select harmonious pixels as voters. The voters need to vote for
similar pixels based on style features. After all the votings, we calculate the total score each
pixel receives from all voters to be the final score for it, which indicates how likely this pixel
is harmonious. Finally, we obtain a voting score map formed by the final scores of all pixels,
which highlights the harmonious regions. The process of voting is visualized in Fig. 3.

Our style voting module takes the style feature map FFFsty ∈ Rh×w×C, and calculates a
style similarity matrix VVV sty ∈R(h×w)×(h×w) with the (p1, p2)-th entry V sty

p1,p2 being the cosine
similarity between the p1-th pixel-level style feature and the p2-th pixel-level style feature:

V sty
p1,p2

= cos(FFFsty
p1
,FFFsty

p2
), (3)

in which V sty
p1,p2 can be viewed as the score that the p1-th pixel receives from the p2-th voter.

Suppose that the output inharmonious region mask from the k-th decoder stage is M̂MM
(k)

,
we resize M̂MM

(k)
to h×w. Then, we select harmonious pixels as voters by assigning weight

(1− M̂(k)
p ) to the p-th pixel, because M̂(k)

p is the p-th entry in M̂MM
(k)

and small M̂(k)
p indicates

reliable harmonious pixels. We replicate M̂MM
(k)

for (h×w) times and arrive at the weight
matrix WWW (k),msk ∈ R(h×w)×(h×w). Based on the weight matrix, the weighted total score that
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the p1-th pixel receives can be represented by

S(k)p1 = ∑
p2

W (k),msk
p1,p2 V sty

p1,p2
. (4)

The scores of all pixels form a voting score map S(k) ∈ Rh×w, which serves as prior infor-
mation to guide the UNet decoder. As shown in Fig. 2, we concatenate the voting score map
with the encoder features from two encoders, which are delivered to the next decoder stage.

Note that our style voting module is flexible in the weighting scheme. Besides WWW (k),msk,
we can design other types of weights assigned to the voters, to select the voters which satisfy
the expected property. Next, we will describe how to introduce auxiliary semantic informa-
tion into the weighting scheme.

3.2.1 Semantic Guided Voting

Intuitively, the objects of similar semantic categories are prone to share similar color or
illumination characteristics. Hence, it would be easier to judge whether an object is har-
monious or inharmonious by comparing it with other objects of similar semantic categories.
For example, given an synthetic image with multiple zebras, we could tell which zebra is a
composite foreground cut from another image by comparing each zebra with other zebras.
Therefore, we explore the effect of bringing the semantic information into our voting pro-
cess. When a voter is voting for a pixel, we assign a higher weight to this voter if they are
semantically similar and a lower weight otherwise.

To achieve this goal, we feed the input image to a pretrained semantic segmentation
network OCRNet [37] and extract the feature map from the last layer as the semantic feature
map FFFsem. After resizing FFFsem to h×w, we calculate the semantic similarity matrix WWW sem ∈
R(h×w)×(h×w). Each entry W sem

p1,p2
is the cosines similarity between each pair of pixel-level

semantic features, in a similar way to (3). We multiply WWW sem with WWW (k),msk as the new weight
matrix, in which case the weighted total score each pixel receives can be calculated as

S(k)p1 = ∑
p2

W (k),msk
p1,p2 W sem

p1,p2
V sty

p1,p2
. (5)

Then, we can replace S(k)p1 in (4) with that in (5) when constructing the voting score map.

3.3 Loss Function
Following [21, 26], our mask-related loss consists of three parts: 1) the binary cross entropy
loss `bce; 2) the structural similarity loss `ssim; 3) the intersection over union loss `iou. Besides
the final estimated mask M̂MM, we also supervise the auxiliary masks output from each decoder
stage. Recall that we also have the style feature loss `sty to supervise the style encoder (see
Section 3.1.1). Therefore, the total loss can be expressed as

L= `sty + `bce+ssim+iou +
K

∑
k=1

`
(k)
bce+ssim+iou, (6)

where `bce+ssim+iou is the sum of three mask-related losses. The upperscript (k) indicates the
output mask from the k-th decoder stage, and the number K of decoder stages is 3.
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4 Experiments

4.1 Experimental Setting
We conduct our experiments on the image harmonization dataset iHarmony4 [8] following
[21]. This dataset contains inharmonious-harmonious image pairs and the corresponding
inharmonious region masks. The iHarmony4 dataset [8] is comprised of four sub-datasets:
HAdobe5K, HCOCO, HFlickr, and HDay2Night. Following [21], we only choose image
pairs with area of inharmonious region smaller than 50% of the whole image to avoid ambi-
guity, resulting in 64255 training images and 7237 testing images.

Our model is implemented based on the Pytorch framework. Our optimizer is Adam
with β1 = 0.9, β2 = 0.999, and weight decay=1e-4. We use the cosineannealing learning
rate scheduler. Our model is trained for 250 epochs in total on 4 GeForce GTX TITAN X
GPUs with batch size 24.

We adopt the same evaluation metrics including Average Precision (AP), F1 score, and
Intersection over Union (IoU) following [21].

4.2 Comparison with the State-of-the-art
Besides DIRL [21] and MadisNet [22] working on inharmonious region localization, we also
choose popular methods from three closely related fields for comparison. The first group is
semantic segmentation networks including UNet [28], DeepLabv3 [7], HRNet-OCR [37],
SegFormer [35]. The second group is image manipulation localization methods including
MantraNet [34], MAGritte [19], SPAN [17]. The third group is salient object detection
methods including F3Net [32], GATENet [38], MINet [24]. For fair comparison, we also use
ResNet34 for ResNet-based models. We choose HRNet30 for HRNet-OCR and SegFormer-
B3 for SegFormer for comparable model size.

4.2.1 Quantitative Comparison

Evaluation results of all methods are listed in Table 1. We can see that our method achieves
the best overall results and outperforms the strongest baseline MadisNet [22] by a large mar-
gin. We also report the detailed results on four subdatasets, based on which our improvement
mainly comes from HCOCO and Hday2night. We will report the comparison of computa-
tional complexity in the Supplementary.

4.2.2 Qualitative Comparison

To visually compare our method with others, we show some visualization results of our
method and the well-behaved baselines in Fig. 4. It can be seen that our method can success-
fully localize the inharmonious region, even in some challenging cases. More results and
analyses can be found in the Supplementary.

4.3 Ablation Studies
In this section, we conduct comprehensive ablation studies to verify the effectiveness of our
design, which are summarized in Table 2. The first row only contains a simple encoder-
decoder branch with RGB image as input. In row 2, we change the input image to YUV
color space and observe performance improvement, which shows that suitable color space is
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Method All HCOCO HAdobe5k HFlickr Hday2night

AP F1 IoU AP F1 IoU AP F1 IoU AP F1 IoU AP F1 IoU

UNet 74.90 0.6717 64.74 68.11 0.5869 56.57 89.26 0.8380 80.85 80.72 0.7683 74.58 35.74 0.2362 19.60
DeepLabv3 75.69 0.6902 66.01 69.09 0.6070 58.21 90.20 0.8591 81.56 80.01 0.7698 74.91 35.87 0.2550 21.38

HRNet-OCR 75.33 0.6765 65.49 68.89 0.5981 57.69 89.63 0.8387 80.98 79.62 0.7489 74.55 34.98 0.2477 21.34
SegFormer 78.05 0.7249 66.55 72.46 0.6578 58.78 89.43 0.8531 80.44 85.19 0.7986 75.02 45.16 0.3856 32.75

MantraNet 64.22 0.5691 50.31 56.55 0.4811 41.04 81.07 0.7510 68.50 67.52 0.6302 58.51 28.88 0.2019 16.71
MAGritte 71.16 0.6907 60.14 64.75 0.6058 51.77 85.50 0.8630 76.36 75.02 0.7725 70.25 31.20 0.2549 17.05

SPAN 65.94 0.5850 54.27 58.41 0.4906 45.07 82.57 0.7786 72.49 69.22 0.6510 62.20 29.58 0.2171 19.41

F3Net 61.46 0.5506 47.48 54.17 0.4703 40.03 74.31 0.6944 60.08 72.53 0.6582 59.31 30.08 0.2563 20.83
GATENet 62.43 0.5296 46.33 55.07 0.4568 38.89 75.19 0.6634 59.18 74.13 0.6256 57.51 30.98 0.2174 19.38

MINet 77.51 0.6822 63.04 71.74 0.6022 55.79 89.58 0.8379 77.23 83.86 0.7761 72.51 37.82 0.2710 19.38

DIRL 80.02 0.7317 67.85 74.25 0.6701 60.85 92.16 0.8801 84.02 84.21 0.7786 73.21 38.74 0.2396 20.11
MadisNet(UNet) 81.15 0.7372 67.28 79.02 0.7108 63.31 88.31 0.8219 77.41 79.24 0.7182 68.12 49.60 0.3851 32.52
MadisNet(DIRL) 85.86 0.8022 74.44 83.78 0.7741 70.50 92.45 0.8850 84.75 85.65 0.8032 75.49 57.40 0.4672 40.47

AustNet 92.20 0.8453 79.63 95.11 0.8866 83.30 89.01 0.8047 76.55 87.72 0.7777 72.61 74.01 0.5554 51.31
AustNet-S 93.01 0.8571 80.96 95.92 0.8963 84.61 89.38 0.8113 76.93 88.21 0.8012 75.16 84.10 0.6438 60.47

Table 1: Quantitative comparison with other methods on the iHarmony4 dataset including
detailed results on each sub-dataset. All metrics are the larger, the better. The best method is
marked in bold and the second best method is marked with underline.

# Components Evaluaion Metrics

Input Color-mapping Voting `sty Semantic AP F1 IoU

1 RGB 73.45 0.6330 56.76
2 YUV 76.28 0.6511 59.24
3 RGB+YUV 76.45 0.6573 59.73
4 RGB+YUV only aux mask 77.32 0.6569 59.81
5 RGB+RGB X X 75.57 0.6685 60.24
6 RGB+YUV X X 79.10 0.6986 64.37
7 RGB+YUV X X X 79.56 0.7242 66.42
8 RGB+YUV X 86.17 0.7741 70.61
9 RGB+YUV X X 86.97 0.7826 71.98
10 RGB+RGB X X 76.78 0.6599 59.65
11 RGB+YUV X X X 92.01 0.8477 78.78
12 RGB+YUV X X X X 93.01 0.8600 81.14

Table 2: Ablation study of key components in our method.

beneficial for the inharmonious region localization task. For row 3, we simply add a style
encoder without color mapping module or style feature loss, and concatenate the multi-scale
encoder features from two encoders as in our method. This leads to minor improvement
compared with row 2, implying that the style feature should be utilized in a better way.

Based on row 3, we add our style voting module in row 6, the performance gain proves
the effectiveness of our style voting module. Adding semantic information in row 7 further
boosts the result. We change the YUV color space in row 6 to RGB, and the obtained results
in row 5 indicate the advantage of YUV color space. To ensure that the major improvement
is not brought by predicting auxiliary masks in each decoder stage, we experiment to only
predict auxiliary masks without style voting module in row 4.

In row 8-12, we conduct experiments with color mapping module. From row 8, we
see that our color mapping module significantly advances the performance and adding style
feature loss in row 9 brings further improvement. In row 10, we replace the input YUV
image with RGB image and the performance drops sharply. The results in row 11 and 12
demonstrate the effectiveness of (semantic-guided) style voting map.
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Image GT AustNet AustNet-S MINet SegFormer DIRL MadisNet

(Unet)

MadisNet

(DIRL)

Figure 4: Qualitative comparison with baseline methods. GT is ground-truth mask.

4.4 Experiments on Multiple Inharmonious Regions

Images in the iHarmony4 [8] dataset mainly contain a single inharmonious region, but in
real-life scenario, it is possible that there are several separate inharmonious regions in one
image and each inharmonious region may also be different in terms of color and illumination.
To investigate the ability of our model to detect multiple inharmonious regions, we build a
set of test images with multiple disjoint inharmonious regions based on the HCOCO subset
of iHarmony4. Specifically, real images in HCOCO may have different inharmonious image
pairs with different manipulated foregrounds. Thus, we combine these inharmonious images
corresponding to a single real image to construct a test set with multiple inharmonious re-
gions. This test set contains 19482 images in total, with the number of inharmonious regions
ranging from 2 to 9. We compare our AustNet and AustNet-S with the strongest baseline
MadisNet [22] on this test set. The detailed quantitative results and visualization results are
left to the Supplementary.

5 Conclusions

In this work, we focus on the essence of inharmonious region localization task and extract
discriminative style features. Centering around the style features, we have proposed a novel
color mapping module and a novel style voting model to help localize the inharmonious
region. We have also verified the effectiveness of utilizing semantic information in the voting
process. Our method significantly outperforms the existing methods.
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