# Inharmonious Region Localization with Auxiliary Style Feature Penghao Wu, Li Niu, Liqing Zhang

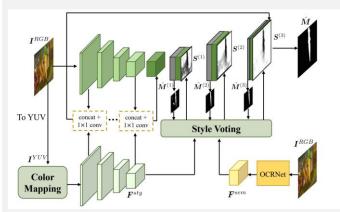
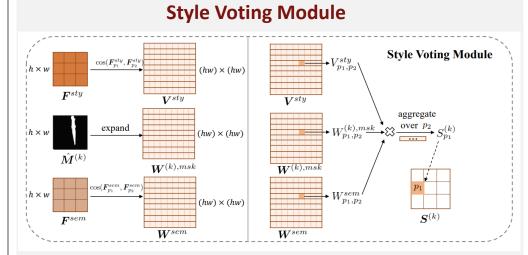

## Inharmonious images

Image editing operations: copy-paste, appearance adjustment

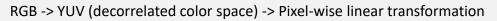

Inconsistent **color and illumination characteristics** in manipulated region



In this work, we propose AustNet to auxiliary style feature directly and utilize it to discriminate the inharmonious region effectively



Codes and pre-trained models are at https://github.com/bcmi/AustNet-Inharmonious-Region-Localization




Vote for other pixels based on style features -> Inharmonious & background pixels

#### Semantic Guided Voting

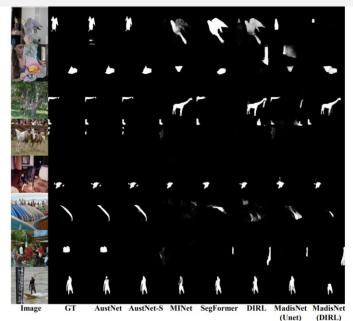
Add Semantic priors into voting process: objects of similar semantic categories are prone to share similar color or illumination characteristics

## **Color-mapping Module**



$$\hat{I}_{c,p} = A_{c,p} \times I_{c,p}^{YUV} + B_{c,p}$$

Style Feature loss to enforce task-relevant color and illumination information


$$s_{inter} = \frac{1}{|\mathcal{P}_{inter}|} \sum_{(p_1, p_2) \in \mathcal{P}_{inter}} \cos(\mathbf{F}_{p_1}^{sty}, \mathbf{F}_{p_2}^{sty}), s_{intra} = \frac{1}{|\mathcal{P}_{intra}|} \sum_{(p_1, p_2) \in \mathcal{P}_{intra}} \cos(\mathbf{F}_{p_1}^{sty}, \mathbf{F}_{p_2}^{sty}).$$

$$\ell_{sty} = \max(s_{inter} - s_{intra} + m, 0).$$

#### **Experiments**

| Method         | All   |        |       | HCOCO |        |       | HAdobe5k |        |       | HFlickr |        |       | Hday2night |        |       |
|----------------|-------|--------|-------|-------|--------|-------|----------|--------|-------|---------|--------|-------|------------|--------|-------|
|                | AP    | F1     | IoU   | AP    | F1     | IoU   | AP       | F1     | IoU   | AP      | F1     | loU   | AP         | F1     | IoU   |
| UNet           | 74.90 | 0.6717 | 64.74 | 68.11 | 0.5869 | 56.57 | 89.26    | 0.8380 | 80.85 | 80.72   | 0.7683 | 74.58 | 35.74      | 0.2362 | 19.60 |
| DeepLabv3      | 75.69 | 0.6902 | 66.01 | 69.09 | 0.6070 | 58.21 | 90.20    | 0.8591 | 81.56 | 80.01   | 0.7698 | 74.91 | 35.87      | 0.2550 | 21.38 |
| HRNet-OCR      | 75.33 | 0.6765 | 65.49 | 68.89 | 0.5981 | 57.69 | 89.63    | 0.8387 | 80.98 | 79.62   | 0.7489 | 74.55 | 34.98      | 0.2477 | 21.34 |
| SegFormer      | 78.05 | 0.7249 | 66.55 | 72.46 | 0.6578 | 58.78 | 89.43    | 0.8531 | 80.44 | 85.19   | 0.7986 | 75.02 | 45.16      | 0.3856 | 32.75 |
| MantraNet      | 64.22 | 0.5691 | 50.31 | 56.55 | 0.4811 | 41.04 | 81.07    | 0.7510 | 68.50 | 67.52   | 0.6302 | 58.51 | 28.88      | 0.2019 | 16.71 |
| MAGritte       | 71.16 | 0.6907 | 60.14 | 64.75 | 0.6058 | 51.77 | 85.50    | 0.8630 | 76.36 | 75.02   | 0.7725 | 70.25 | 31.20      | 0.2549 | 17.05 |
| SPAN           | 65.94 | 0.5850 | 54.27 | 58.41 | 0.4906 | 45.07 | 82.57    | 0.7786 | 72.49 | 69.22   | 0.6510 | 62.20 | 29.58      | 0.2171 | 19.41 |
| F3Net          | 61.46 | 0.5506 | 47.48 | 54.17 | 0.4703 | 40.03 | 74.31    | 0.6944 | 60.08 | 72.53   | 0.6582 | 59.31 | 30.08      | 0.2563 | 20.83 |
| GATENet        | 62.43 | 0.5296 | 46.33 | 55.07 | 0.4568 | 38.89 | 75.19    | 0.6634 | 59.18 | 74.13   | 0.6256 | 57.51 | 30.98      | 0.2174 | 19.38 |
| MINet          | 77.51 | 0.6822 | 63.04 | 71.74 | 0.6022 | 55.79 | 89.58    | 0.8379 | 77.23 | 83.86   | 0.7761 | 72.51 | 37.82      | 0.2710 | 19.38 |
| DIRL           | 80.02 | 0.7317 | 67.85 | 74.25 | 0.6701 | 60.85 | 92.16    | 0.8801 | 84.02 | 84.21   | 0.7786 | 73.21 | 38.74      | 0.2396 | 20.11 |
| MadisNet(UNet) | 81.15 | 0.7372 | 67.28 | 79.02 | 0.7108 | 63.31 | 88.31    | 0.8219 | 77.41 | 79.24   | 0.7182 | 68.12 | 49.60      | 0.3851 | 32.52 |
| MadisNet(DIRL) | 85.86 | 0.8022 | 74.44 | 83.78 | 0.7741 | 70.50 | 92.45    | 0.8850 | 84.75 | 85.65   | 0.8032 | 75.49 | 57.40      | 0.4672 | 40.47 |
| AustNet        | 92.20 | 0.8453 | 79.63 | 95.11 | 0.8866 | 83.30 | 89.01    | 0.8047 | 76.55 | 87.72   | 0.7777 | 72.61 | 74.01      | 0.5554 | 51.31 |
| AustNet-S      | 93.01 | 0.8571 | 80.96 | 95.92 | 0.8963 | 84.61 | 89.38    | 0.8113 | 76.93 | 88.21   | 0.8012 | 75.16 | 84.10      | 0.6438 | 60.47 |

## **Qualitative Comparison**

