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Abstract

In this paper, we study the representation of the shape and pose of objects using their
keypoints. We propose an end-to-end method that simultaneously detects 2D keypoints
from an image and lifts them to 3D. The proposed method learns both 2D detection and
3D lifting only from 2D keypoint annotations. In addition to being end-to-end from
images to 3D keypoints, our method also handles objects from multiple categories using
a single neural network. We use a Transformer-based architecture to detect the keypoints,
as well as to summarize the visual context of the image. This visual context information
is used while lifting the keypoints to 3D, to allow context-based reasoning for better
performance. Our method can handle occlusions as well as a wide variety of object
classes. Our experiments on three benchmarks show that our method performs better
than the state-of-the-art. Code https://github.com/ybarancan/end2end3D.

1 Introduction

A keypoint-based shape and pose representation is attractive because of its simplicity and
ease of handling. Example applications include 3D reconstruction [10, 31, 40], registra-
tion [20, 26, 27, 52], and human body pose analysis [4, 6, 29, 39], recognition [17, 37], and
generation [44, 53]. The keypoints are often detected as 2D image coordinates due to the
ease of the corresponding annotation. But in many applications (e.g. augmented reality),
both 3D shape and pose are required [47] for the subsequent geometric reasoning tasks.

Estimating keypoints in 3D [42, 43, 47, 55] has two pitfalls: (i) the need of 3D keypoints,
pose, or multi-view for supervision; (ii) the lack of direct pose reasoning with respect to a
canonical frame. Learning-based methods can provide both 3D keypoints and pose from
a single image, making them suitable for applications from scene understanding [13] to
augmented reality [28]. Template-based single view methods [38, 51] may also be used to
obtain 3D keypoints and pose from 2D keypoints. However, besides requiring templates,
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Figure 1: Our method can provide accurate 3D estimations for diverse categories directly
from a single image. The 2D keypoints are detected and used with an image-based feature
vector to produce 3D estimates.

they are known to be sensitive to self-occlusions [11]. Therefore, we adopt a learning-based
method for single view inference of both the 3D keypoints and the pose of objects.

In this paper, we consider that only one image per object is available both during training
and inference. This allows us to learn from diverse datasets, such as internet image collec-
tions, potentially offering us a high generalization ability. For better scalability, we also as-
sume that only minimalistic supervision in the form of 2D keypoints and objects’ categories
are available. Existing methods that learn 3D shape and pose from an image collection by
object categories are also known as deep non-rigid structure-from-motion (NrSfM) due to
their underlying assumption. The method proposed in this paper also belongs to the same
class, which can be divided into single [23, 35, 48, 54] and multi-category [31] methods.
Multi-category methods estimate 3D shape and pose of various classes of objects, and are
interesting due to two main reasons, (i) computational: one single neural network can infer
shapes and poses for objects from different categories; (ii) relational: possibility of establish-
ing/exploiting relationships across categories. This is in contrast to single-subject methods
such as [23, 49] where a different model is trained for each test sample. Instead we follow
the standard setting and procedure used in [31, 33, 48].

Most existing methods [9, 23, 31, 35, 48, 54] that output pose estimates from images
operate in two stages; 2D keypoint extraction followed by 3D shape and pose estimation.
These two stages are often performed independently. We argue that these two stages are
dependent and can mutually benefit from each other. Thus, 2D keypoints can be extracted
while being suitable for the down-streaming task of 3D reasoning. In particular, we extract
the visual context information along with the 2D keypoints from the keypoint extraction
network. Later, both visual context and 2D keypoints are provided in a differentiable way to
the network that lifts 2D keypoints to 3D. Our experiments clearly demonstrate the benefit
of visual context information during 3D pose and shape recovery.

We model the 3D shape using a dictionary learning approach, similar to [31], where the
shape basis for the union of categories are learned. The instance-wise shape is then recovered
with the help of the shape basis coefficients. However, it is known that the size of the shape
basis requires careful tuning [31, 35]. In the multi-category setting, the latent space is shared
by all categories and each category can have a different optimal shape basis size. Moreover,
directly using the shape coefficients results in being over-sensitivity to small perturbations
in the input. We show that both problems can be solved with a simple formulation, that
sparsifies the shape basis by applying cut-off on the shape coefficients based on a learned
threshold vector. This new formulation with a negligible number of additional parameters
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allows for a much simpler network compared to sparse dictionary-based networks [23].
The major contributions of our work can be summarized as:

• End-to-end reconstructing of 3D shape and pose in a multiple category setup, using a
single neural network.

• We propose to use auxiliary image context information to improve the performance.
• Our method achieves state-of-the-art results in the multi-category setting, with signif-

icant improvement.

2 Related Work
The task of lifting 2D keypoints of deformable objects to 3D from a single image has been
mostly studied in the context of NrSfM, where the task is to recover the poses and view-
points from multiple observations in time of an object [1]. Significant research in NrSfM
exists such as sparse dictionary learning [22, 56], low-rank constraints [12], union of local
subspaces [57], diffeomorphism [32], and coarse-to-fine low-rank reconstruction [2]. It is
possible to use NrSfM frameworks to build category-specific models that can learn to esti-
mate pose and viewpoint from a single image by treating the images of the same category as
observations of a single object deformed at different time steps [8, 23, 24].

Obtaining the 3D structure of an object from a single image has been studied sparsely.
In [19] instance segmentation datasets were used to train a model that outputs 3D meshes
given an image. Correspondences between 2D-3D keypoints were also used to improve
results [21]. While some recent methods can estimate the viewpoint and non-rigid meshes,
these methods work on objects with limited diversity, such as faces [18, 36, 50].

The closest line of work to ours involves building a single model for a diverse set of
input classes. C3DPO [30] proposed to learn the factorization of the object deformation
and viewpoint change. They propose to enforce the transversal property through a separate
canonicalization network that undoes rotation applied on a canonical shape. Park et al. pro-
posed using Procrustean regression [34] to determine unique motions and shapes [35]. They
also propose an end-to-end method using a CNN that can output 3D location of human key-
points from the image. However, their method cannot handle multiple object categories or
occluded keypoints. Moreover, it requires temporal information in the form of sequences.
Human pose estimation is also tackled in [9], where the authors propose a cyclic-loss and
discriminator. They further boost their results by using temporal information and additional
datasets for the training of their GAN. However, their method is limited to human pose es-
timation. Recently [48] extended Procrustean formulation with autoencoders and proposed
a method that can infer 3D shapes without the need for sequence. However, their method
requires a more complex network, two encoders, as well as Procrustean alignment optimiza-
tion at test-time, which renders the method slow [48]. All these methods accept 2D keypoints
as input rather than images and tackle the problem of obtaining 3D keypoint locations from
a single image using a separate keypoint detector, such as a stacked hourglass network [46].

3 Multi-category from a Single View
We extract 3D structures in the form of 3D keypoints, given only an image of an object
category. During training, we only have access to the 2D location of keypoints and the
category label. For simplicity, we separate our solution into two parts: category and 2D
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Figure 2: System pipeline. Multi-category from a single view.

keypoints extraction from the image and lifting them to 3D. We will first focus on lifting the
given 2D keypoints to 3D, followed by the end-to-end network introducing our 2D keypoint
extractor and the tight coupling with the lifter network.

3.1 Multi-category NrSfM
Let Yi = [yi1, . . . ,yik] ∈ R2×k be a stacked matrix representation of k 2D keypoints from the
ith view. We represent the structure of the ith view as Xi = α

⊺
i S, using the shape basis S ∈

RD×3k and coefficients αi ∈ RD. For simplicity, we assume that the keypoints are centered
and normalized and that the camera follows an orthographic projection model, represented
by Π = [I2×2 0]. Given the camera rotation matrix Ri ∈ SO(3), as well as the centered and
normalized keypoints, we can write Yi =ΠRi(I3⊙α

⊺
i S), where the operation I3⊙s reshapes

the row vector s ∈ R1×3k to a matrix of the from R3×k. The recovery of shape and pose by
NrSfM given n views can be written as1,

min
αi,S,Ri∈SO(3)

n

∑
i=1

L(Yi,ΠRi(I3 ⊙α
⊺
i S)). (1)

where L(a,b) is a norm-based loss of the form ∥a−b∥.
In the context of multi-class NrSfM, our method extracts 3D structures of objects from a

wide variety of classes. Thus, (I3 ⊙α
⊺
i S) ∈R3×k, should be able to express the 3D structure

of objects with different number of keypoints. Let Z represent the set of object categories and
zi ∈ Z be the category of sample i. Let each category z ∈ Z be represented by kz keypoints,
thus we have a total of k = ∑z kz keypoints. To “access" the correct keypoints we have a
subset selection vector ζz ∈ {0,1}k that indicates which dimensions relate to category z.
Given these multi-category definitions, we can reformulate 1 as

min
αi,S,Ri∈SO(3)

n

∑
i=1

L(Yi ◦ζzi ,ΠRi(α
⊺
i S)◦ζzi), (2)

where ◦ is the broadcasted elementwise multiplication.
In the above formulation, Ri and αi are inputs, hence category dependent, while S is

shared among all categories. To formulate the problem as a learning-based approach, let αi
be the output of a function of input Yi, i.e. α(Yi). Let us separate the function α(.) into two
composite functions α(Yi) = g( f (Y)), with g(.) being an affine function, g(υ) =Wgυ +bg
with υ ∈RF ,Wg ∈RD×F ,bg ∈RD. We do not place any restriction on the function f (.) other
than taking some observation Yi and outputting a vector of dimension F . Moreover, let us
rewrite Ri as a function of the input y, i.e. R(y). Representing all the parameters with θ , the
problem definition becomes

min
θ

∑
i
L
(
Y◦ζzi ,Π

(
R(Y)([Wg f (Y)+bg]S

)
◦ζzi

))
. (3)

1We will omit I3 and the transposition of α throughout the rest of the paper for the ease of notation.
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Figure 3: Cut-off coefficients translate the original latent space (a) by bS to the representation
in (b). This enables the latent space vectors (S1 and S2) to have non-negative coefficients.
The latent space vectors (S1 and S2) as well as the translation term bs are learned from the
data while adding negligible number of parameters.

In the above formulation, shape basis coefficients αi are latent codes with latent space basis
vectors Wg and a translation term bg, which are shared for all categories. Projecting fea-
tures of objects from different categories into a shared latent space lets the method extract
cross-categorical geometric relationships, please refer to Supp for visuals. Moreover, it sub-
stantially simplifies computations since we do not require a separate network for each class.

3.2 Cut-off Shape Coefficients

Equation 3 is under-determined unless there are additional constraints imposed on the sys-
tem. The most common constraint is restricting the dimension D of the shape basis coeffi-
cients αn [1, 5]. However, selecting the optimal cardinality requires careful tuning [31, 35].
Since our method extracts 3D structures of objects from a wide variety of classes, the latent
space has to accommodate latent codes from a wide range of inputs. Since most objects share
some common characteristics, using different manifolds for each class results in failure to
utilize cross-class information and an increase in the complexity of the method. On the other
hand, the dimensionality of the optimal manifold is different for each class. Thus, ideally,
we would like to automatically select a manifold for each input in a way that maximizes the
performance. Note that the optimal manifold selection does not only depend on the object
class, and we encourage cross-class rules for manifold assignment.

The manifold selection problem can be posed as integer problem, where given a sample
Yn, the network selects a subset of the basis vectors S. This can be formalized using a binary
selection vector In ∈ {0,1}D where ∑d In[d] ≤ D;∀n. Given the the basis coefficients βn ∈
RD, the representation of Yn is ψn = (In ◦βn)S. Since this formulation is non-differential, we
propose a differentiable alternative which we call cut-off coefficients. The idea is to truncate
negative shape coefficients to zero allowing the network a differential way to select basis
vectors. To gain back the expressiveness of full range shape coefficients we introduce a bias
term, which allows the network to learn basis which are suited for non-negative coefficients.
This idea is visualized in Fig 3. The latent space in the figure is 2-dimensional and the
effect of the proposed formulation is translating the latent space by a vector bs such that the
coefficients of the latent vectors are non-negative for any input. Thus, we arrive at ψ̂n =
βnS+bS where βn ∈RD

≥0 and bS ∈RB. Note that the non-negativity constraint can be simply
implemented using a ReLU based truncation (βn = ReLU(β ′

n)). Furthermore, we want to
highlight that this formulation does not reduce the expressiveness of the network, even if we
would not re-optimize the basis, please see Supp for the proof.
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Figure 4: Our method uses a transformer architecture to extract 2D keypoints, object class,
and a context vector. The detected keypoints and the context vector are processed by a fully
connected network to output 3D keypoints and viewpoint from only a single image. The
whole end-to-end training is only supervised by 2D keypoint annotations.

Applying the proposed cut-off coefficient approach to our problem Eq. 3 we get,

L
(
Y◦ζ ,Π

(
R(Y)(ReLU(Wg f (Y)+bg)S+bS

)
◦ζ

))
. (4)

Thus, we get the discussed advantages, mainly that our method learns to adaptively pick the
active basis vectors, thus selecting the dimensionality of the manifold. Furthermore, all parts
including the shape basis vectors S, the coefficient generating function Wg f (.)+bg and the
bias bS, are learned from the data. Note that the proposed formulation does not require ISTA
iterations [12] which is employed in [23] through a specific encoder-decoder architecture.
Moreover, the learnable bias term differentiates our method from sparsity iteration while not
changing the expressiveness of the original model.

The proposed formulation has the property of allowing for sparseness, which encourages
the representation of the objects in the shape space, i.e. coefficients β to be disentangled
[3, 15]. Intuitively, as the number of active (non-zero) coefficients increases, more different
combinations of the shape basis vectors S can arrive at the same solution. By allowing to
automatically cut off coefficients, the network can learn a small number of shape coefficients
to represent changes from one object to another, thus each coefficient can learn to represents
a different major variation. Moreover, the cut-off imposed by the ReLU implies that a small
change in the coefficients will, likely, not result in any change in the output if the coefficient
is inactive, which improves the robustness of the overall method.

4 End-to-End Learning from Images
The image of an object can be used for more than only 2D keypoint extraction. We propose
to detect the 2D keypoints from the image and extract a context vector that can be used in
conjunction with the 2D keypoints to obtain a better 3D estimation. The detected 2D key-
points and context vector are used by the lifter network, in our end-to-end trainable pipeline.

4.1 Keypoints from Images
We require a method that can output the locations of an object category dependent pre-
defined set of keypoints. Therefore, the problem at hand naturally extends to object classi-
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fication. Moreover, in order to fully utilize the image, the keypoint network should produce
a context feature representation from the image that can guide the lifter network. Thus, the
desired function is T (I) = (Yz,z,ρ) where I is the image, Yz are the category dependent
keypoint locations, z the category of the object and ρ is the context vector.

We propose to use a DETR-based [7] architecture at the core of function T . Thus, the
input image is processed by the backbone (Resnet50 [16]), and the resulting feature map is
fed to the transformer. The transformer uses two sets of learned query vectors. The first set
is related to keypoints, where each query vector q represents a keypoint. To formalize this,
let the maximum number of keypoints among all categories be maxzkz be K. Thus, we can
extract 2D normalized locations δ ∈ [0,1]2 and the semantics ω ∈ {0,1}K of each keypoint
by processing the corresponding query vector using two MLPs. The semantics of a keypoint
is category dependent and encoded as a one-hot vector. For example, a given entry in ω can
correspond to the front right of a car or the left rear leg of a chair. Entries of ω with indices
larger than kz are zero. The true semantics are denoted by Ω.

To help the lifter network estimate the 3D keypoints, the visual context in the image is
important. Thus, we use a second set of learned query vectors, which gets processed by
the transformer together with the keypoint queries. The output of the transformer for the
context query is then processed by two MLPs. The first outputs a Nρ dimensional context
vector and the second ẑ the one-hot encoded category probability. The category probability
is used in conjunction with the keypoint type estimates to obtain the correct 2D keypoint
representation, while the context vector is used by the lifter network together with the 2D
keypoint representation, see Fig. 4.

We train the network with two supervision signals. First, we perform direct supervision
of the 2D keypoints and the category-specific outputs ω and z, where we use Hungarian
matching to select the supervision targets. Second, by training end-to-end, the keypoint
extraction network also receives supervision via the lifter network, which helps to learn the
lifting and keypoint regression jointly. It is also the indirect supervision signal that guides the
learning of the context ρ . This end-to-end connection of the lifter and keypoint extraction
network is in sharp contrast to existing papers, which focused on either of the two parts. Our
experiments show that the combination of the two can greatly improve performance.

4.2 End-to-end Pipeline
Given the end-to-end joint 2D-3D model, the first step in the training loop is Hungarian
matching over the keypoint queries and the GT keypoints. For this, the loss to minimize is
given by LH =Ll +Lk where Ll = ||y−δ ||1 and Lk =LCE(Ω,ω). The Hungarian matching
output provides the set of query vectors that are one-to-one matched to true keypoints. We
reformat selected location estimates δ̂ using the matched semantics ω̂ and the category esti-
mate ẑ into the form given in Eq. 2. Let this extracted 2D keypoint representation be Ŷ and
the true keypoints be Ȳ. Adding the category loss of the keypoint network, we arrive at the
following set of losses: Location loss Ll = ||Ȳ− δ̂ ||1; KP Type loss Lk = LCE(Ω, ω̂); Cat-
egory loss Lb = LCE(z̄, ẑ); Reprojection loss Lr = L(Ȳ◦ζ ,ΠR(Ŷ,ρ) f (Ŷ,ρ)◦ζ ) . We use
Huber loss for Lr. For the total loss, the different terms are combined using hyperparameters.

During evaluation, where we cannot use Hungarian matching, we first get the object
category estimate ẑ. Then, for each keypoint type defined for that category, we take the
location of the most likely proposal and convert it into the form given in Eq. 2 to obtain
ŷ. The combination of ŷ and the context vector is processed by the lifter network to output
3D pose and view. The lifter network is given in Fig. 5. The architecture is designed to
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Figure 5: Our lifter architecture combines context vector with the estimated keypoints to
produce improved pose estimates.

allow for easy pre-training. We first pre-train the transformer to estimate the locations of 2D
keypoints and feed the lifter network true 2D locations alongside the context vector. After
that we end-to-end train the whole method.

5 Experiments

5.1 Baselines
We experiment on the Synthetic Up3D (S-Up3D), PASCAL3D+ and Human3.6M datasets.
For all datasets, we use the pre-processed versions of [31]. There are only a few NrSfM
methods that can handle a setting as diverse as our method. We compare against C3DPO [30]
and PAUL [48] in all datasets since they can produce accurate estimates in a wide range of
datasets and settings. We also report results of EMSfM [45] and GbNrSfM [14] on the S-
Up3D and PASCAL3D datasets. We compare against [9, 25, 35] only in Human3.6M dataset
since they cannot handle occlusions or multiple object categories. We refer to the end-to-
end method of [35] as Proc-CNN. Note that, obtaining an Orthographic-N-point (OnP) [41]
solution requires an optimization at test time which renders methods that depend on OnP [33,
48] slower than feed-forward methods such as ours. Also, [9], which we refer to as Geo, uses
extra datasets and temporal information. In Pascal3D, we also compare against CMR [19]

We report results with three settings: 1) Lifter and transformer are trained separately
without context vector (Ours/TR); 2) Lifter and transformer are trained end-to-end without
context vector (Ours w/o Context); 3) The proposed end-to-end training with context vector
(Ours). We also experiment with the stacked hourglass network [46] to extract 2D keypoints.

5.2 Evaluation protocol
Following [30], we report absolute mean per joint position error MPJPE(X ,Y )=∑

K
k=1 ||Xk−

Yk||/K as well as Stress(X ,Y ) = ∑i< j |||Xi−X j||−||Yi−Yj|||1/(K(K−1)), where we center
both the estimates and ground truth at zero mean. For all datasets, we follow the same
canonical train/test split and evaluation protocol as [30].

6 Results
In order to show the performance of individual components, we separate the results into two
parts: (i) using GT 2D keypoints and (ii) estimating the keypoints directly from the image

Citation
Citation
{Novotny, Ravi, Graham, Neverova, and Vedaldi} 2019

Citation
Citation
{Novotn{ý}, Ravi, Graham, Neverova, and Vedaldi} 2019

Citation
Citation
{Wang and Lucey} 2021

Citation
Citation
{Torresani, Hertzmann, and Bregler} 2008

Citation
Citation
{Fragkiadaki, Salas, Arbel{á}ez, and Malik} 2014

Citation
Citation
{Chen, Tyagi, Agrawal, Drover, MV, Stojanov, and Rehg} 2019

Citation
Citation
{Kudo, Ogaki, Matsui, and Odagiri} 2018

Citation
Citation
{Park, Lee, and Kwak} 2020

Citation
Citation
{Park, Lee, and Kwak} 2020

Citation
Citation
{Steger} 2018

Citation
Citation
{Park, Lee, and Kwak} 2017

Citation
Citation
{Wang and Lucey} 2021

Citation
Citation
{Chen, Tyagi, Agrawal, Drover, MV, Stojanov, and Rehg} 2019

Citation
Citation
{Kanazawa, Tulsiani, Efros, and Malik} 2018

Citation
Citation
{Toshev and Szegedy} 2014

Citation
Citation
{Novotn{ý}, Ravi, Graham, Neverova, and Vedaldi} 2019

Citation
Citation
{Novotn{ý}, Ravi, Graham, Neverova, and Vedaldi} 2019



CAN: END-TO-END MULTI-CATEGORY 3D POSE AND SHAPE 9

SH SHOurs OursOurs OursC3DPO C3DPOGT GTGT GT

Figure 6: Visual results on the H36m and Pascal3D datasets. 2D keypoint estimates of ours,
HRNet (SH) from [31] an GT, plus 3D structures from 2 angles for C3DPO, ours and GT.
The images in the figure are cropped around the humans for visualization purposes. Our
network produces better 2D keypoint estimations even when the points are occluded.

and producing the 3D pose with these estimates. Note that the latter setting corresponds to
image-to-3D task.

Pascal3D Human3.6M S-Up3D
Method MPJPE Stress MPJPE Stress MPJPE Stress

Geo-SH ‡* - - 51 - - -
EM-SfM 131.0 116.8 - - 0.107 0.061
GbNrSfM 184.6 111.3 - - 0.093 0.062
PoseGAN - - 130.9 51.8 - -
Proc †* - - 86.4 - - -
PAUL † 30.9 - 88.3 - 0.058 -

C3DPO-base 53.5 46.8 135.2 56.9 0.160 0.105
C3DPO 38.0 32.6 101.8 43.5 0.068 0.040

Ours 29.5 26.6 92.8 42.6 0.057 0.035

Pascal3D Human3.6M
Method MPJPE Stress MPJPE Stress

Geo-SH ‡* - - 68 -
CMR/SH 74.4 53.7 - -

C3DPO/SH 57.4 41.4 145.0 84.7
Proc-SH †* - - 124.5 -

Proc-CNN †* - - 108.9 -
PAUL-SH † - - 132.5 -

Ours/SH 56.1 39.0 140.7 80.9
Ours/TR 61.3 47.9 114.0 58.8

Ours w/o Cont 57.6 42.9 113.8 56.7
Ours 51.6 35.3 107.7 55.4

Table 1: Results on Pascal3D, Human3.6M and S-Up3D datasets with Left GT keypoints
and Right estimated keypoints. †: Uses test time optimization. *: Rrequires temporal se-
quences for training. ‡Uses additional datasets for training.

6.1 Results with GT Keypoints
We present our results for the lifter network when the GT keypoints are used in Table 1.
Our method outperforms all methods that do not perform test-time optimization apart from
[9], which uses additional datasets and temporal information. Our method outperforms all
methods in the Pascal3D dataset where our method’s multi-class focus is shown best. We also
outperform all other methods in the S-Up3D dataset. Comparing C3DPO-base and Ours, the
boost the cut-off coefficients provide can be seen. Our method is only slightly worse than
the Procrustean network [33] in the Human3.6M dataset although they use sequences for
training and test-time Procrustean optimization. It can be seen that our method produces the
best overall results while being applicable in all datasets.

6.2 Results with Estimated Keypoints
The results with estimated keypoints, i.e. direct pose estimation from the image, are given
in Table 1. In both datasets our method outperforms the competitors. We see that the boost
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mainly comes from the proposed joint training and the context vector. Especially test-time
Procrustean optimization methods, even when competitive with GT keypoints, suffer consid-
erably using estimated keypoints, visible in the Human3.6M results. For the Pascal dataset,
neither PAUL [48] nor Procrustean network [33] even report numbers. The context vector
improves performance and allows for the reprojection loss to provide gradients more easily
to the earlier layers of the network. Our method provides the best overall results in different
datasets. This is the result of the proposed flexible end-to-end framework that can be readily
applied to any dataset.

6.3 Disentanglement

To evaluate the effect of the proposed cut-off weights on the latent space, we measure the
mutual coherence of the latent space basis vectors Wg. The linear combinations of these
vectors create the latent code that is then decoded into the 3D keypoints via S. Thus, the
mutual coherence of the latent basis vectors provides a measure of disentanglement. Table 2
shows that sparse cut-off coefficients encourage latent basis vectors to be less correlated.
Please refer to Supplementary Material for visual samples for disentanglement and cross
categorical geometric relationships explored by the proposed method.

Method S-Up-3D Pascal3D Human3.6M
Standard (no cut-off) 0.89 0.84 0.44

Ours (cut-off) 0.36 0.38 0.24

Table 2: Mutual coherence of the latent space basis vectors Wg with respect to the proposed
cut-off formulation on all datasets.

7 Conclusion
We study the problem of estimating 3D pose and shape from a single image for objects of
multiple categories, in an end-to-end manner. Our learning framework relies only on 2D
annotations of keypoints for supervision, and exploits the relationships between keypoints
within and across categories. The proposed end-to-end learning process offers a structured
and unified approach for the image-to-3D problem. Our experiments show that end-to-end
training and the use of contextual information improve the performance substantially. Our
method is the first of its kind, providing a framework that can be applied to any dataset. We
also outperform all the compared methods in estimating 3D shape and pose directly from
images, on three benchmark datasets.
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