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Abstract

We present GameCodec, the first neural video codec designed for cloud gaming:
a type of online gaming where the video game is streamed from a remote server to a
user’s device. This application is a challenge for video compression, as players often
expect low latency and high visual quality. Additionally, gaming video is often inher-
ently challenging to compress due to extreme camera and object motion, rich textures
and visual effects. Although neural video codecs have already shown great progress on
natural videos, there is so far little work on compressing gaming video. Furthermore,
existing neural codecs are unable to take useful game engine information into account.
In this work, we introduce a novel neural network based cloud gaming codec that lever-
ages rendering information in an end-to-end fashion. Specifically, we introduce DMC,
a decomposed motion compensation method that splits movement in the video into two
separate steps: camera motion and object motion. We demonstrate the effectiveness of
our method by showing substantial bit rate savings compared to both neural and classical
baseline codecs.

1 Introduction

Modern video games require increasingly powerful hardware to render frames in high qual-
ity. For many consumers, this means the latest games can only be played using expensive
desktop computers with heavy duty graphical processing units. Cloud gaming is a type of
online gaming that aims to address this issue. Instead of rendering a game locally, frames
are rendered on the server side and transmitted to a client device. The client device is only
tasked to decode the video feed in real-time and transmit user input back to the server. We

show this setup in Figure 1.
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Rendering server-side has advantages for both users and game developers: users can play
the latest games without requiring expensive hardware, while game developers can overcome
the heterogeneity of client-side hardware, and can optimize their games for known server-
side hardware. Cloud gaming is becoming increasingly popular, and most cloud providers
offer their own platform, examples including Sony PlayStation Now [42], Microsoft Xbox
Game Pass [29], NVIDIA GeForce Now [34], Amazon Luna [2] and Google Stadia [9].

Nevertheless, cloud gaming poses many technical challenges, in particular the coding of
high quality frames (4K 60fps) under extremely low-latency constraints (100ms). Codecs
such as H.264 [51] or H.265 [44] have poor coding efficiency in this extreme low-latency
setting. Additionally, the extreme motion characteristics of gaming videos pose a challenge
for video coding algorithms. Most existing video codecs are designed for natural videos with
well-controlled motion, and therefore cannot handle large and abrupt camera movement or
chaotic object motion well. [31]. This results in large bandwidth need, with recommended
bandwidth between 15 (720p 60fps) to 40 (4K 60fps) Mbps for comfortable use [9, 34]. In
contrast, streaming services such as Netflix recommend 15Mbps at 4k 24fps [33]. This is a
potential issue both for the cloud service provider, which will have a hard time scaling to a
large number of users, and the end-user, who will need to have a stable and fast connection.

Many works [16, 25, 31, 41] have tried to improve the coding efficiency in the cloud
gaming setting. Existing solutions [16, 25, 31] typically detect focal points using rendered
context, and exploit the spatial rate control capabilities of H.264 and H.265 codecs by setting
per-block quality parameters. These works introduce algorithms that automatically retrieve
the regions-of-interest (ROI) that correspond to areas the player is likely to pay attention to.
They use the resulting importance map to modify the bitrate allocation spatially. The sacri-
fice in bitrate in large non-important regions together with the high fidelity of the relatively
small important region lead to lower bandwidth requirement in expectation, all while pre-
serving perceptual quality. Current solutions are often combinations of learned components
and handcrafted codecs. However, despite recent advances in neural video codecs for natural
video, no solution exists that is fully neural network based.

In this work, we propose GameCodec, the first neural video codec designed for rendered
content in cloud gaming applications. Learned codecs have several advantages over standard
codecs in the cloud gaming setting such as optimization of perceptually relevant objectives
through ROI-coding [36] or easy adaptation to a new domain by finetuning of their param-
eters for it [43, 46, 47]. Especially, learned codecs can make better use of rendered context
from the game engine to improve coding efficiency, using a holistic approach to integrate
context information in the coding process. By leveraging this property, our GameCodec in-
troduces a novel Decomposed Motion Compensation method that employs rendering depth
and camera poses to compensate for the extreme motion in gaming videos in two consecutive
steps: camera motion and object motion. We show the benefit of using rendered content as
input to our newly introduced camera motion compensation by showing a 26.68% Bjgnte-
gaard Delta (BD) [4] rate savings on the TartanAir [49] dataset and 44.22% on AirSim [40]
dataset compared to a baseline neural codec (SSF [1]).

In summary, the contributions of this paper are:

1. The first end-to-end neural video codec designed for cloud gaming applications,

2. A decomposed motion compensation method that addresses the fast and abrupt motion
typical for gaming videos,

3. The complete pipeline from data collection to development and evaluation of neural
video codecs on rendered content videos with auxiliary rendering information.
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2 Related Work

Neural video compression. There has been a substantial increase in neural video coding
research in recent years [1, 12, 14, 22, 26, 27, 36, 37, 38, 39, 53, 55]. Most works [1, 12, 22,
26, 27, 38, 39, 53] have focused on the low-delay, or P-frame setting. In this mode, video
frames are transmitted using previously decoded frames as context, enabling real-time video
transmission. This setting is therefore well-suited for cloud gaming.

In the low-delay setting, the latest neural P-frame codecs [1, 17, 39, 53] outperform
the H.264 [51] and H.265 [44] codecs on standard compression datasets like UVG [28] and
MLC-JVC [48] in the RGB color space. Motivated by this success, we build a neural P-frame
codec for rendered content based of the neural codec SSF [1], as it is likely to outperform
H.264. H.264 is the workhorse of cloud gaming platforms like NVIDIA GeForce Now [34],
although other competitors like Stadia [9] reportedly use the more recent codecs VP9 [32]
and AV1 [15].

Cloud gaming codecs. Research on video coding for cloud gaming applications is split
into two broad categories: (1) coupling the game engine and coding process to render and
code frames more efficiently [41] and (2) modifying the video encoding process only [16, 25,
31]. The first category is inconvenient for game developers, as it requires adapting the game
engine, and assumes availability of non-trivial operations on end-user devices. For example,
the double 3D image warping strategy of Shi et al. [41] requires the game engine to detect
a future probable viewpoint that can be used as reference for encoding later frames, then
render and encode it to later be used as reference for encoding frames that will be displayed.
Additionally, it requires the end-user device to perform 3D image warping.

The second category, where only the video encoding strategy is modified, is more ap-
pealing to game developers. Here, cloud gaming platforms carry the burden of adapting the
video coding strategy, as the inter-dependency between the game engine and the video codec
is reduced to a minimum. For instance, CAVE [16] makes use of the depth map and pencil
buffer to define an importance map, later used to spatially control the rate, exploiting the
ROI-coding capability of HEVC [44]. Spatial rate control allows to code areas the player
is likely to attend with greater quality, at the expense of other areas, allowing on average a
reduction in bitrate for the same perceived quality. This exploits a property of the human vi-
sual system where acuity degrades exponentially from the focal points [50]. It is interesting
to note that while a similar work, DeepGame [31], makes use of a neural network to generate
the importance map, to the best of our knowledge, there is no existing work that uses a fully
neural video codec in the gaming setting.
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Figure 2: (a) Camera motion in professional videos versus camera motion in gaming videos.

(b) Schematic view of the difference between camera and object motion in a scene.

3 GameCodec: a cloud gaming video codec

Motion in cloud gaming video. In natural videos or animations, the content creator has
full control of the camera movement, and the viewer has no control over the viewpoint. Be-
cause of this lack of control, abrupt viewpoint changes typically lead to motion sickness [19].
Therefore, most professionally created video content tend to have steady, predictable camera
movements to allow the viewer to follow and understand the content [6, 7]. For casually
captured videos, on a phone for instance, camera movement is often more arbitrary. To al-
leviate shaking or other chaotic motions, stabilization methods that are hardware-based [10]
or software based [20, 24] are sometimes used.

In contrast, the camera in cloud gaming videos is controlled by the player, leading to
higher tolerance for abrupt scene changes. As a result, camera motion is often fast and
abrupt changes happen regularly as the player reacts to events in the game, especially for
first-person and third-person action games. Figure 2(a) illustrates the differences in camera
motion between the two settings schematically. Extreme camera movements make the mo-
tion compensation step when coding the video more challenging. As a result, video codecs
will likely rely more heavily on residual coding to compensate for errors resulting from in-
effective motion compensation. As residuals are more expensive to transmit than the often
highly correlated motion vectors, this can result in a higher bit cost.

Beside extreme camera motion, complex object motion poses an additional challenge.
For example, cars will display fast rigid motion in racing games, and particle effects like
smoke and motion blur result in chaotic motions. The difference between these two types
of motion is visualized in Figure 2(b): the camera motion is caused by the movement of the
camera, and the object motion is caused by objects changing or moving in the scene.

Decomposed Motion Compensation. Motivated by video stabilization methods [20, 24],
we address this challenge of extreme motion in gaming videos by introducing DMC, a
Decomposed Motion Compensation strategy that breaks down the complex motion into dis-
tinct camera motion £ and object motion fobi, and performs motion compensation in a
two-step approach. This strategy is visualized schematically in Figure 2.

We incorporate this strategy in a neural codec, as shown in Figure 3. First, the Camera
Motion AE estimates the camera flow field f'f‘"" using rendered content information, includ-
ing depth map d; and camera poses C;_; and C;. We obtain a first prediction X" by warping

X;_1 with f'f“’". Second, the Object Motion AE estimates the object scale-space flow field f',o bj
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Figure 3: The GameCodec architecture. Content produced by the game engine is shown in
pink and is annotated with a circle, content from the codec is shown in blue and is annotated
with a cross. All autoencoders are mean-scale hyperpriors [3, 30].

using both the ground-truth frame x; and the camera motion warped prediction X{*”. Finally,
we obtain a refined prediction X;” bj by warping X" with f',o b/ This warped prediction is
used to compute an input to the Residual AE, which transmits the residual. The quantized
latent of each autoencoder is shared with the subsequent autoencoder, similar to SSF [1].

Camera Motion Compensation: To compensate for camera motion — or egomotion —of a
video, a method first needs to estimate the camera motion. For instance, Liu et al. [23] use 3D
camera motion estimation to obtain a 3D camera path for motion compensation, while Liu et
al. [24] model camera motion as a subspace of the motion field throughout a sequence. While
such methods produce satisfactory results for the video stabilization applications, they often
rely on the accuracy of feature tracking and fail when the motion is too extreme or feature
points are missing. For cloud gaming video, it is possible to extract auxiliary rendering
information such as depth, camera pose, normal, or albedo from the G-buffer: a screen space
representation of geometry and material information stored as intermediate representation
by most recent game engines like Unreal [8] or Unity [13].

We leverage this camera pose and depth to enable egomotion compensation. Specifically,
given a depth d;, camera pose C; of a frame ¢ and camera pose C;_; of its previous frame
t — 1, we can compute the motion vector £f7 | to map pixels from from ¢ to t — 1 [45, 49].

1—t—
Note, £747 | only captures the appearance changes cause by camera motion of static objects

in the s;,nes. It does not capture the motion of dynamic objects or dynamic visual effects
in the scene. We use the Camera Motion AE, parametrized as a mean-scale hyperprior AE
network [3, 30], to compress and send the motion vector from a transmitter to a receiver. The
estimated motion vector ff“m is then used to warp the previous reconstructed frame %,_1.
An alternative strategy would be to transmit the depth map d; and camera poses C;, C;—1
from a transmitter to a receiver and compute the motion vector at the receiver side. However,
it is often cheaper to send motion vectors. For example, when the camera is static, the motion
vector would be all-zeros, but depth information would still be expensive to transmit.
Object Motion Compensation: Camera motion compensation takes care of egomotion,
but likely cannot handle the changes caused by dynamic object motion and visual effects in
the scene. Furthermore, it is challenging to estimate object motion in case of occlusions [5,
11] and chaotic motions. To handle these challenging motions, we use scale-space motion
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Figure 5: Example images from our dataset created using AirSim [40].

warping [1]. The Object Motion AE is based on the Motion AE in the SSF model, i.e., it is
a mean-scale hyperprior AE which estimates the object motion scale-space vector field f‘,o bi,
This field is used to warp the previous warped prediction X" into a final warped prediction
%%/ before residual coding.

Loss function. GameCodec is trained end-to-end using a rate-distortion loss, with a

parameter 3 used to trade off rate for distortion:
ERD()C) :ED(X,)'Z)Jrﬁ'ER(Z). (1)

Here, the distortion loss measures error between ground truth x and reconstruction X, and the
rate loss measures the transmission cost for all quantized latent variables z. The distortion
loss Lp =E [||x — £[|3] measures the mean squared error between target x and reconstruction
£ in the pixel domain. We use a rate loss Lg = E [—log pg(z)], which is the expected negative
log-likelihood of the quantized latent under the (learned) prior, typically measured in bits
per pixel. Using an entropy coding algorithm, one can compress the given latents under the
learned prior to (nearly) this bitrate.

4 Experiments

4.1 Dataset

TartanAir Dataset. We use the TartanAir dataset [49] for training and evaluation. This
dataset contains 18 photo-realistic simulation environments generated using the Unreal En-
gine [8], with challenging visual effects like day-night cycles, weather effects or seasonal
changes. The video frames have a resolution of 640 x 480.

TartanAir contains multiple video sequences per environment, with an actor traversing
different paths through each environment. The videos were captured with both left and
right cameras attached on the actors (a simulated drone) in two different modes: easy and
hard, based on their motion patterns. We use the easy and left videos for our experiments.
Specifically, we select n — 1 left and easy sequences from each environment as a training set
(TartanAir-train) and the last sequence as a test set (TartanAir-test), where n is in range from
6 to 36 and is different for each environment. In total, we use 188 sequences for our training
and 18 sequences for our test dataset. Figure 4 shows example frames from the datasets.
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AirSim Dataset. To further assess the performance of GameCodec, we follow [49] and
leverage the tool AirSim [40] to collect a high-resolution testing dataset. The environ-
ments used for this dataset are different from the ones provided in the TartanAir dataset.
We refer to this dataset as AirSim-test. Specifically, we used eight interesting environments
with dynamic content provided by AirSim, including: AbandonedPark, Africa, AirSimNH,
Building_99, CityEnviron, Coastline, LandscapeMountains, and ZhangJiajie. Using the Air-
Sim [40] tool, we collect two sequences of 150 frames from each environment and use it as
our testing dataset. In total, this dataset contains 16 videos of 150 frames/video. The videos
were captured at a 1280 x 704 resolution. To simulate realistic gaming environments with
visual effects and chaotic motions, we enable all the weather effect simulation including
raining, snowing, foggy, cloudy and falling leaves. For each frame, we capture a rendered
RGB image and its corresponding depth planar and camera pose. While the interactive mode
from AirSim provides a convenient way to collect these data, we realized a few issues with
this approach, including slow capturing rate and mismatching capturing times (image, depth,
and camera pose of a same frame are captured at slightly different times). These mismatched
data can hinder the effect of using rendering information. We thus follow [49] and use the
pause feature to enforce consistent time of the data captured for each frame. Figure 5 shows
example frames from the dataset. Please refer to our supplementary material for the meta-
data details to reproduce this dataset.

One criticism of using AirSim as evaluation data is that this dataset is not representative
for the many diverse game settings. Our counterargument to this point is that the AirSim data
is representative of an important subset of common games: those with realistic environments,
where the player sees the scene from a first-person view. Although the collected scenes are
simpler than games with multiple agents moving in the scene, their simplicity facilitates
easier reproduction by others.

4.2 Training and performance

Training details. We train GameCodec using the original loss £ (Eq. 1) for 1.1M steps,
using a batch size of 8, where each example in the batch is a sequence of 3 frames (one
I-frame and two P-frames). We first train GameCodec using the Adam optimizer with a
learning rate of 10~ for 1M steps with frames cropped at 256 x 256 resolution. We then
finetune the models for another 100K steps with a learning rate of 10> where frames are
cropped at 384 x 384.

Baseline methods. We compare our work to both learned and handcrafted low latency
video codecs.

Neural codecs: We reimplemented SSF [1], a recent high performance neural codec,
and report our own scores on the test datasets, as the original paper did not report scores on
any rendered content datasets. As SSF was originally designed for natural videos without
rendering information, we also test a modified version of SSF in which its motion autoen-
coder takes both camera-motion-based optical flow and two corresponding frames as input.
We call this method as SSF-enhanced in our experiments. These methods are also trained
from scratch on the TartanAir-train using the same training scheme as GameCodec. Al-
though more recent neural baselines with strong rate-distortion performance exist, they do
not have open source implementations available, making direct comparison on rendered con-
tent data difficult.
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Figure 6: Rate-distortion performance on TartanAir-test dataset [49]
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Figure 7: Rate-distortion performance on AirSim-test dataset [40]

Handcrafted codecs: We also compare to the standard codec AVC (or H.264) [51] and
H.265 (or HEVC) [44], which are the common video codecs used in many existing cloud
gaming settings. We used FFMPEG’s implementation for both H.264 and H.265 codecs,
as well as the HM reference implementation for H.265 codecs [18]. As the images were
rendered in RGB color space, we converted the captured frames to YUV420 color space to
use these codecs and converted their results back to RGB for the comparison. In addition,
we used HEVC-SCC (HM-SCC), a reference implementation of the extended screen content
version of the codec that is able to handle rendered RGB frames.

Rate-Distortion Performance

GameCodec: Figure 6 and 7 show the rate-distortion (R-D) performance on TartanAir-
test and AirSim-test respectively with the distortion in term of PSNR and MS-SSIM. We
report Bjontegaard-Delta (BD) rate savings [4]. All results consistently show that our Game-
Codec outperforms the competitive neural codecs including SSF [1] and SSF-enhanced by
a large margin. Specifically, it achieves 26.68% and 14.32% BD rate gain on TartanAir-test
and 44.22% and 26.61% BD rate gain on AirSim-test compared to SSF [1] and SSF-enhanced
respectively. In comparison to the handcrafted codecs, GameCodec achieves better perfor-
mance than HEVC (with both HM’s and FFMPEG’s implementation) and AVC (FFMPEG’s
implementation) by a significant margin. In particular, GameCodec outperforms HM by
23.89% and 20.16% in BD rate gain on TartanAir-test and AirSim-test respectively. All
these results demonstrate the effectiveness GameCodec’s DMC approach to leverage render-
ing information to enhance video compression performance. Figure 8 visualizes the effects
of its camera and object motion compensation.
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Figure 8: Example of decomposed motion compensation via camera and object motion.

Video codecs designed for rendered content: The results on both datasets show that a
video codec designed for rendered content videos outperforms generic ones designed for
natural videos. For handcrafted video codecs, the extended version of HEVC specifically
designed for screen content, HEVC-SCC, boosts the performance of HEVC significantly on
both the TartanAir-test and the AirSim-test datasets. Specifically, it saves 26.07% BD rate on
TartanAir-test and 12.02% BD rate on AirSim-test. We observe a similar improvement for
neural video codec with the baseline model SSF [1] trained on natural video (the Vimeo90K
dataset [52]) versus one trained on TartanAir-train. The improvement is 26.63% BD rate
saving on TartanAir-test and 4.79% BD rate saving on AirSim.

Thanks to the flexibility of a data-driven approach, in contrast to a handcrafted video
codec, a neural codec can be trained to work better on a new data distribution such as gam-
ing videos in general or even videos from a specific game. However, simply training a neu-
ral codec originally designed for natural video (SSF [1] and SSF-enhanced) is not enough
to fully exploit the useful rendering information. Instead, our GameCodec designed with
a DMC method can effectively leverage rendering information to boost compression per-
formance in an end-to-end approach. The results show that GameCodec can even obtain
comparable RD performance to the powerful reference implementation HM-SCC.

Ablation Study. We conducted an ablation study to investigate the contribution of each
of the components of GameCodec. Specifically, we conducted a leave-one-out study for
the camera motion module and object motion module. In addition, as our camera motion
module estimate the camera motion optical flow from the transmitter side and send it to the
receiver side, an alternative approach could be transmitting its corresponding planar depth
and perform depth-based 3D warping in the receiver side. This method is similar to the ones
used to enhance the conventional methods [25, 41].

Figure 9 shows the performance of the methods in our ablation study. The results show
that both camera and object motion compensation modules play an important role to the
overall performance of GameCodec, and that their separation is useful. The alternative ap-
proach where we transmit depth instead of flow performs better than SSF-enhanced, but still
underperforms the full GameCodec that transmits camera motion flows.
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Figure 9: Ablation study showing rate-distortion performance on the TartanAir dataset, for
distortion metrics PSNR (left) and MS-SSIM (right).

Complexity. As each codec is optimized for a different platform — HM and HM-SCC run
on CPU, GameCodec and SSF [I] run best on GPU - it is not easy to directly compare
the complexity of these methods. As an anchor for the reader, we report here the complex-
ity comparison between the neural codecs: SSF [1] has 28.9M parameters and operates at
606 kM ACs/pixel while GameCodec has slightly more parameters, 36.6M, but operates at a
smaller complexity of 537 kMACs/pixel.

Discussion.  We verified that TartanAir [49] is sufficiently large for training neural codecs
by measuring the ability of models trained on TartanAir to generalize to the unseen AirSim
dataset [40] in Figure 7, indicating overfit is unlikely. The above notwithstanding, we argue
that the ability to overfit is possibly an advantage of neural (gaming) codecs. The cloud-
gaming provider knows which games it serves, so it is possible to overfit the neural codec to
a certain game or environment to further enhance its performance. This strategy is already
deployed by NVIDIA [35] for gaming content super-resolution. However, such an approach
does require training data curation, and we therefore do not explore it in this work. Future
work could incorporate more rendering information such as segmentation or albedo, and
could optimize directly for perceptual metrics such as LPIPS [54] or VMAF [21].

5 Conclusion

In this work, we present GameCodec, a neural video codec specifically designed for cloud
gaming content. Our codec integrates rendering information provided by the game engine
to improve coding efficiency. In particular, it decomposes motion compensation into com-
pensation for egomotion, which is available from the game engine, and compensation for
object motion, estimated from the video content. It performs warping for these two motions
separately, which effectively makes the object motion estimation task easier to perform. As
neural codecs can specialize to the data distribution they are trained on, we furthermore ob-
serve that we can easily finetune it to specific game environments through finetuning. We
demonstrate 44.22% Bjontegaard-delta rate savings compared to a recent neural video codec
that does not make use of rendered info, and show competitive performance against hand-
crafted baselines such as HM. We have shown that neural codecs are a promising direction
for the gaming and rendered content setting, and hope this work opens up the way for fol-
lowup work in this area.
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