

Multi-hop Modulated Graph Convolutional **Networks for 3D Human Pose Estimation**

Jae Yung Lee, I Gil Kim AI2XL, Institute of Convergence Technology, KT, Korea

Motivation

Network Architecture

Figure 3. Network architecture of proposed MM-GCN for 3D HPE

Network architecture of proposed MM-GCN for 3D HPE. (D, N) indicates feature channels and number of body joints, respectively.

Experiments & Results

Experiments Setting

- Adjacency Matrix
 - The range of dependencies for each hop distance have high correlation with each other. Thus, it makes difficult to merge features of all k-hop distance.
- Aggregate Method
 - summation and concatenation are insufficient to model the relationships between the aggregate features of each hop distance.
 - Unshared weight matrix $W^{(k)}$ and concatenation increases number of model parameters significantly.

Proposed Model

The range of dependencies for *k*-hop distance

- **Dataset** : We evaluate our approach on the Human3.6M dataset. To demonstrate the generalizability of our model quantitatively, we evaluated our model on the testing set of MPI-INF-3DHP after the model was trained on Human3.6M.
- **Implementation Detail** :

	2D ground truth	2D pose detection		
# of Channels	128	384		
Non-local layer	X	0		
Bath size	1024			
# of Epochs	200			

Ablation Study

Method	# of Channels	# of Parameters	MPIPE	P-MPIPE
SemGCN	128	0.27M	42.14	33.53
SemGCN w/ Non-local	128	0.43M	40.78	31.46
Modulated GCN w/o AM	128	0.27M	38.83	30.35
Modulated GCN	128	0.29M	38.25	30.06
Ours (2-hop) w/ AM	128	0.31M	38.36	29.64
Ours (3-hop) w/ AM	128	0.33M	37.41	29.31
Ours (4-hop) w/ AM	128	0.36M	36.10	28.76
Ours (5-hop) w/ AM	128	0.38M	35.63	27.55

Table 1. Performance comparison of proposed MM-GCN and various GCN-based methods.

Qualitative Results

- Adjacency Matrix
 - The proposed adjacency matrix $\widehat{\mathbf{A}}'_{\mathbf{k}}$ represents the relationships between neighbouring joints, except middle joints up to a distance

Figure 4. Qualitative results obtained by our MM-GCN on the Human3.6M test set

Quantitative Results

Method	Dire.	Disc.	Eat	Phon.	•••	WalkT.	Avg.	Method	Dire.	Disc.	Eat	Phon.	•••	WalkT.	Avg.
Martinez	51.8	56.2	58.1	69.5	•••	52.4	62.9	Martinez	39.5	43.2	46.4	51.0	• • •	43.1	47.7
Sun	52.8	54.8	54.2	61.8	•••	53.4	59.1	Sun	42.1	44 3	45.0	515		44 8	483
Yang	51.5	58.9	50.4	62.1	•••	47.7	58.6	Eana	20.1	11.5	12.0	10 5	•••	11.0	10.5
Fang	50.1	54.3	57.0	66.6	•••	50.6	60.4	Fang	38.2	41./	43.7	48.3	•••	41./	43.7
Pavlakos	48.5	54.4	54.4	59.4	• • •	47.8	56.2	Pavlakos	34.7	39.8	41.8	42.5	•••	36.5	41.8
Zhao	47.3	60.7	51.4	61.1	• • •	45.3	57.6	Hossain&Little	35.7	39.3	44.6	47.2	•••	39.4	44.1
Sharam	48.6	54.5	54.2	62.2	• • •	49.7	58.0	Zou	38.6	42.8	41.8	44.6	• • •	37.9	43.7
Zou	49.0	54.5	52.3	59.2	• • •	45.4	55.6	Quan	36.9	42 1	40.3	437		37.8	42.9
Quan	47.0	53.7	50.9	57.8	• • •	45.3	54.8	Quan	30.7	- 2.1	TU.	т <i>З.1</i>	•••	57.0	$\tau 2.7$
Liu	46.3	52.2	47.3	55.5		43.7	52.4	Liu	35.9	40.0	38.0	42.5	•••	36.2	41.2
Zou&Tang	48.2	51.6	47.8	53.1	• • •	42.6	52.4	Zou&Tang	36.6	40.1	37.7	41.0	• • •	34.9	41.0
Ours(3-hop)	46.8	51.4	46.7	52.5	•••	42.2	51.7	Ours(3-hop)	35.7	39.6	37.3	40.0	•••	34.7	40.3
Table	Table 2. Quantitative comparisons on			Table 3	. Qua	antita	tive o	compa	riso	ns on					

Human3.6M under MPJPE.

labic J.	Quantita		inpansons	U
Hun	nan3.6M	under	P-MPJPE.	

Method	3DPCK	AUC
Yang	69.0	32.0
Pavlakos	71.9	35.3
Habibie	70.4	36.0
Wang	71.9	35.8
Quan	72.8	36.5
Liu	79.3	47.6
Ours	81.6	50.3

of k-hops, the relationships between the adjacency matrices $\widehat{\mathbf{A}}'_{\mathbf{k}}$ of each hop have low correlations with each other.

- Aggregate Method
 - $\lambda_k \in \mathbb{R}^{D' \times N}$ is a learnable modulation matrix to model the relationships between the features of the k-hop distance and the merged features up to the (k+1)-hop distance C_{k+1} .

 $\mathbf{C}_{k} = \lambda_{k} \odot \left(\mathbf{W}^{(0)} \mathbf{H} + \mathbf{W}^{(1)} \mathbf{H} \hat{\mathbf{A}}_{k}^{\prime} \right) + \left(1 - \lambda_{k} \right) \odot \mathbf{C}_{k+1}$ $\mathbf{H}' = \sigma \Big(\lambda_1 \odot \Big(\mathbf{W}^{(0)} \mathbf{H} + \mathbf{W}^{(1)} \mathbf{H} \hat{\mathbf{A}}_1' \Big) + (1 - \lambda_1) \odot \mathbf{C}_2 \Big)$

The MM-GCN is designed such that the features become more heavily weighted as the hop distance becomes shorter.

Table 4. Quantitative comparisons on MPI-INF-3DHP.

The proposed MM-GCN performed the best on most of the tasks, _ and on average, under both MPJPE and P-MPJPE.

Conclusions

We introduced an MM-GCN for 3D HPE to effectively model long-range dependencies between each body part and its distant neighbours. We performed experiments to demonstrate its competitive performance in comparison with state-of-the-art methods for 3D HPE. DIGICO **KT**