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Multi-hop Modulated Graph Convolutional
Networks for 3D Human Pose Estimation
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Figure 3. Network architecture of proposed MM-GCN for 3D HPE

Network architecture of proposed MM-GCN for 3D HPE. (D, N)
indicates feature channels and number of body joints, respectively.

Experiments & Results

Experiments Setting
Dataset : We evaluate our approach on the Human3.6M dataset. To
demonstrate the generalizability of our model quantitatively, we
evaluated our model on the testing set of MPI-INF-3DHP after the
model was trained on Human3.6M.
Implementation Detail :

Figure 1. High-order GCN based 3D HPE

* Adjacency Matrix

The range of dependencies for each hop distance have high
correlation with each other. Thus, it makes difficult to merge
features of all k-hop distance.

 Aggregate Method

summation and concatenation are insufficient to model the

relationships between the aggregate features of each hop distance.
- Unshared weight matrix W and concatenation increases number
of model parameters significantly.

Proposed Model
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Figure 2. Proposed GCN for 3D HPE
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* Adjacency Matrix

- The proposed adjacency matrix K’krepresents the relationships
between neighbouring joints, except middle joints up to a distance

of k-hops, the relationships between the adjacency matrices K’kof
each hop have low correlations with each other.

 Aggregate Method

- A, ERP'*N js 3 learnable modulation matrix to model the
relationships between the features of the k-hop distance and the
merged features up to the (k+1)-hop distance Cj 1.

C, =4, O(W"H+W®"HA,)+(1-4,)0C,,

H'=a(,11 © (W(O)H + WOYHA! ) +(1-4)0 Cz)

The MM-GCN is designed such that the features become more
heavily weighted as the hop distance becomes shorter.

2D ground truth 2D pose detection
# of Channels 128 384
Non-local layer X O
Bath size 1024
# of Epochs 200
* Ablation Study
‘Method # of Channels  # of Parameters MPJPE P-MPJPE
SemGCN 128 0.27TM 42.14 33.53
SemGCN w/ Non-local 128 0.43M 40.78 31.46
Modulated GCN w/o AM 128 0.27M 38.83 30.35
Modulated GCN 128 0.29M 38.25 30.06
Ours (2-hop) w/ AM 128 0.31M 38.36 29.64
Ours (3-hop) w/ AM 128 0.33M 37.41 29.31
Ours (4-hop) w/ AM 128 0.36M 36.10 28.76
Ours (5-hop) w/ AM 128 0.38M 35.63 27.55

Table 1. Performance comparison of proposed MM-GCN and various GCN-based methods.
* (Qualitative Results
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Figure 4. Qualitative

results obtained by our MM-GCN on the Human3.6M test set

e (Quantitative Results

Method  Dire. Disc. Eat Phon. . WalkT. Avg. Method Dire. Disc. Eat Phon. . WalKkT. Avag.
Martinez ~ 51.8 56.2 58.1 69.5 024 629  Martinez 395 432 464 510 431 477
Sun 528 548 542 61.8 234 531 gy 421 443 450 515 448 483
Yang 51.5 589 504 621 477 586  C 80 417 437 48E "7 4
Fang 50.1 543 57.0 66.6 50.6 60.4 ang - - - - - -
Pavlakos 485 544 544 59.4 478 56.2 Pavlakos 347 39.8 418 425 36.5 41.8
Zhao 473 60.7 514 611 453 57.6  Hossain&Little 35.7 39.3 44.6 47.2 39.4 44.1
Sharam 486 545 542 622 49.7 58.0 Zou 386 428 418 446 37.9 437
Zou 4907 945 923 99.2 454 96 qguan 36.9 421 403 437 378 42.9
Quan 470 537 509 57.8 453 548 .

Ciu 463 5292 473 E5E 437 o4  Liu 359 400 38.0 425 36.2 41.2
Zou&Tang 48.2 516 47.8 53.1 426 524 Zou&Tang 36.6 401 377 410 349 410
Ours(3-hop) 46.8 51.4 467 525 422 517  Ours(3-hop) 357 39.6 37.3 40.0 347 40.3

Table 3. Quantitative comparisons on
Human3.6M under P-MPJPE.

Table 2. Quantitative comparisons on
Human3.6M under MPJPE.

Method 3DPCK AUC
Yang 69.0 32.0
Pavlakos 719  35.3
Habibie 704  36.0
Wang 719  35.8
Quan 2.8 36.5
Liu 7193 47.6
ours 81.6 50.3

Table 4. Quantitative comparisons on MPI-INF-3DHP.

The proposed MM-GCN performed the best on most of the tasks,
and on average, under both MPJPE and P-MPJPE.

Conclusions

We introduced an MM-GCN for 3D HPE to effectively model long-range
dependencies between each body part and its distant neighbours. We
performed experiments to demonstrate its competitive performance in
comparison with state-of-the-art methods for 3D HPE.



