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Abstract

ODIN is a popular Out-Of-Distribution (OOD) detection algorithm. It is based on the
observation that using temperature scaling and adding small perturbations to the input
can separate the softmax score distributions between in- and out-of-distribution images,
allowing for more effective detection. Instead of passively making this observation, we
derive a new loss, termed Gradient Quotient (GQ) loss, that encourages this behaviour
by the network. GQ can be used either to train a classification network from scratch, or
fine-tune it. We show theoretically why GQ encourages the observation made by ODIN
and evaluate GQ on a number of network architectures and datasets. Experiments show
that we achieve SOTA on a large number of standard benchmarks.

1 Introduction
Deep Neural Networks (DNN) must handle Out-Of-Distribution (OOD) samples, if they are
to operate in the real world. This is because the data distribution of samples during inference
rarely matches that of the data during training.

A long line of research suggested various approaches to solving this problem. Perhaps
the most natural one is to look at the softmax response and reject samples whose max soft-
max score is below some pre-defined threshold [8]. However, it was already shown that
neural networks can produce arbitrarily high softmax confidence for inputs far away from
the training data [? ].

A long list of authors used various cues (either on the data or the network) to detect
OOD samples. For example, ODIN [13] observed that after using temperature scaling in the
softmax function and adding small controlled perturbations to inputs, the softmax score gap
between in - and out-of-distribution examples is further enlarged. This makes it easier to
distinguish between the two.

An alternative approach was suggested by Lee et al. [11] who assume that pre-trained
features can be fitted well by a class-conditional Gaussian distribution and use Mahalanobis
distance with respect to the closest class conditional distribution to determine if a test sample
is normal or not. Similarly, Amersfoort et al. [22] use uncertainty in estimation by measuring
the distance to the closest class centroid in feature space.

Recently, it was suggested that instead of looking at the softmax, one should consider
an energy based score function [15], which was shown empirically to give results that are
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superior to softmax-based scores. This was later extended by Lin et al. [14] who use a
multi-level approach that relies on all layers of the network, and not just the last one.

A different direction was suggested by Serrà et al. [20]. They pose that OOD can be de-
tected based on input complexity, and suggest using generative models to learn the likelihood
of the data.

Common to these methods is that they make some observation about the data (or the
network) and conduct their OOD detection after the fact. This makes sense, as they do not
want to interfere with the actual training of the network. These cues are usually weak and an
alternative approach is to use OOD exposure. For example, Papadopoulos et al. [19] add a
regularization term to the loss function such that the model produces a uniform distribution
for OOD samples. Yu and Aizawa [26] use unlabeled OOD data to maximize the discrep-
ancy between the decision boundaries of two in-distribution classifiers to push OOD samples
outside the manifold of the in-distribution (ID) samples.

Observe that this assumes that OOD samples are available during training. Shafaei et
al. [21] conducted exhaustive tests and have shown that in realistic applications with high
dimensional images this approach suffers from low accuracy and is not reliable in practice.

Turning our attention back to ODIN, we take a different approach. Instead of assuming
that the ODIN observations hold, we modify the loss function of the underlying classifier to
reflect them. That is, during training we encourage the softmax scores to be such that the
controlled perturbations of the input will increase the softmax score gap between in- and
out-ouf-distribution samples. This makes it easier for ODIN to detect OOD.

Specifically, we train the classification network with a new loss term that consists of the
sum of the standard cross-entropy loss a new loss function, termed Gradient Quotient, that
serves as a regularizer. We also show that GQ can be used to fine-tune a pre-trained network.
At test time, we use the network with ODIN on top of it. If ODIN declares the test sample
to be in-distribution, we return the classification result of the network. Otherwise, we report
that the sample is OOD.

We thoroughly evaluate our approach on multiple network architectures and multiple
datasets, and find that GQ does indeed help ODIN achieve SOTA results. We also con-
duct extensive experiments to quantify the tradeoff between improving OOD detection and
maintaining in-distribution classification accuracy, and find that GQ usually increases OOD
detection, as expected, at the cost of a slight degradation in in-distribution classification ac-
curacy. To summarize:

• We introduce a new loss term, Gradient Quotient (GQ), that helps regularize cross-
entropy loss for better OOD detection.

• We show analytically why GQ helps separate the softmax scores of in- vs. out-of-
distribution samples

• We evaluate GQ on several different network architectures and several different datasets,
achieving SOTA on many of them. Our code is available at: https://github.
com/ajevnisek/learning-odin.

2 Gradients Quotient
ODIN, or Out-Of-Distribution Detection [12], makes two contributions. First, they use tem-
perature scaling to help separate the softmax scores between in- and out-of-distribution im-
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ages. Then, they observe that perturbing a query sample in the direction of the gradient can
have stronger effect on the in-distribution images than that on out-of-distribution images.

Following [12], let f = ( f1, ... fN) denote a neural network trained to classify N classes.
The network takes as input an In-Distribution sample x and computes softmax scores Si(x;T ),
controlled by temperature T :

Si(x;T ) =
exp( fi(x)/T )

∑
N
j=1 exp( f j(x)/T )

. (1)

The maximum softmax probability Sŷ(x;T ) = maxi Si(x;T ) is termed the softmax score, and
the label assigned by the network is taken to be: ŷ(x) = argmaxi Si(x).

Now, ODIN claims that for an In-Distribution sample x, with a perturbation:

x̃ = x− εsign(∇xSŷ) (2)

The gap: Sŷ(x̃)−Sŷ(x) will be higher, on average, than the same gap for Out-of-Distribution
samples. ODIN’s decision rule is therefore:

|Sŷ(x̃)−Sŷ(x)|
ID
≷

OOD
T h. (3)

We suggest training a neural network such that this is a design property of the network’s
weights. We do that by adding a loss term to the training procedure of the neural network.
To derive the loss term, take the Taylor expansion of the softmax with the perturbed image
Sŷ(x̃) around x:

Sŷ(x̃) = Sŷ(x)+ ε ·∇xSŷ(x)+higher orders of ε (4)

Plugging this into the ODIN decision rule, we get:

|Sŷ(x̃)−Sŷ(x)|= |Sŷ(x)+ ε ·∇xSŷ(x)−Sŷ(x)|= |ε ·∇xSŷ(x)|≷ T h. (5)

Equation 5 implies that under a first order Taylor expansion, ODIN’s decision rule is
equivalent to requiring a large softmax gradient (i.e., a large ∇xSŷ(x)). The term ’large’ is
ill-defined (’large’ compared to what?). Instead, we introduce a Gradient Quotient (GQ) loss
term:

LGQ =
||∇xSŷ||

∑y j ̸=ŷ ||∇xSy j ||
(6)

where y is the true label, ŷ is the estimated class label, y j are all class label which are not the
true class label y. This way, the term ’large’ refers to the softmax scores of the rest of the
class labels. The loss encourages the softmax of the correct label to be higher than that of
the rest of the classes. Observe that we can encourage the ODIN assumption during training
because we have access to the ground truth label y, and we only use in-distribution samples.
The full loss term we train our networks with is:

L = LCE(y, ŷ)+λ ·
||∇xSy||1

∑y j ̸=y ||∇xSy j ||1
(7)

where LCE is the standard cross-entropy loss.
Our full algorithm is given in Algorithm 1. We train the network using the loss function

in Equation 7. At inference time, we use the network and on top of it run ODIN. If ODIN
determines the test sample is in-distribution we return the result produced by the network,
else we report that the test sample is OOD.
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Algorithm 1 Learning ODIN
Inputs (1) In-Distribution dataset Dtrain

ID , (2) classifier fθ (·) with parameters θ .
Outputs: (1) An OOD detector, (2) An In-Distribution classifier.

1: Train fθ (·) with the following loss: L = LCE +λ ·LGQ
2: Create g(x) an ODIN OOD-detector on fθ ’s logits.

return g(x) is the OOD-detector, fθ is the In-Distribution classifier
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Figure 1: Log-Softmax Gradi-
ent w.r.t Image-Pixels Distribution
||∇x logSŷ(x;T )||1. When our loss term
is added, the distribution for In-Distribution
samples is wider than in the case of classical
training (CE-loss). We refer the reader to a
zoom-in of this figure in the supplemental to
witness that all OOD datasets but one did not
have significant support growth.

We first evaluate the impact of GQ
on the separation of softmax scores be-
tween in- and out-of-distribution samples.
Figure 1 shows the distribution of the
Log-Softmax Gradient w.r.t Image-Pixels
:||∇x logSŷ(x;T )||1). In this case, the
base network was trained on CIFAR-10,
and the dashed black line shows the den-
sity of Log-Softmax Gradients it produces.
The colored lines show the density of
Log-Softmax Gradients for various OOD
datasets. There is indeed a nice separation
between the in-distribution samples and the
out-of-distribution samples, as observed by
ODIN. But, when training the network us-
ing GQ, the separation increases dramati-
cally, as shown by the solid black line. This
suggests that the separation is much larger
now, making it easier for ODIN to detect
OOD samples.

Following ODIN, we next look at the
statistics of the deviation of the network’s
maximal logit from all other logits, where
we define logits gap to be the average deviation of the maximal logit from all other logits.
Figure 2(a) shows the logits gap for a model that was trained solely with Cross-Entropy (CE)
loss. Figure 2(b) shows the logits gap for a model that was trained with our Gradient Quotient
(GQ) loss regularization. It is clear that the distribution of the logit gap for In-Distribution
samples shifted to the right when the model is trained with GQ compared to when it was
trained using only CE-loss. Furthermore, one can observe that for OOD data, the distribu-
tion did not shift. This validates the observation that neural networks tend to make more
confident predictions on in-distribution images. This observation was made in ODIN [12],
and encoded explicitly in the loss function of [19] using OOD data. We encode it into the
loss function without using OOD data.
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Figure 2: Logit Gap Distribution logits gap is defined to be the average deviation of the
maximal logit from all other logits. (a) shows the logits gap for a model that was trained
using cross-entropy loss. (b) shows the logits gap for a model which was trained with our
method.

3 Experimental Results

3.1 Setup
In-Distribution Datasets We take the standard course of CIFAR-10 and CIFAR-100 [9]
as In-Distribution datasets. We use the standard split, with 50K train images and 10K test
images. For higher resolution images we take Imagenet-30 as an In-Distribution dataset. In
the latter case, we resize images to 254×254.

Out-of-Distribution Datasets We use OOD datasets only at test time. We do not train
or fine-tune using OOD datasets. We followed [14] and evaluated the performance of OOD
detection on a total of 10 datasets: MNIST [10], K-MNIST [3], fashion-MNIST [23], LSUN
(crop) [25], SVHN [18], Textures [2], STL10 [4], Places365 [27], iSUN [24] and LSUN
(resize) [25]. When CIFAR-10 and CIFAR-100 images are used as In-Distribution, we resize
all images to 32× 32 pixels. As for the case of Imagenet-30 as OOD, we resize all images
to 254×254. For each OOD dataset, we evaluate on the entire test split.

Evaluation Metrics We evaluate our method with three metrics (1) Area under the Re-
ceiver Operating Characteristic curve (AUROC), (2) False Positive Rate (FPR95) on OOD
data when the true positive rate for in-distribution data is 95%, and (3) In-Distribution
test-accuracy, that is the accuracy of the classifier on the in-distribution test set. We fol-
low [14, 15] and report average AUROC scores over the datasets under test and average
FPR95 over the test datasets.

Architectures We evaluate our approach on a number of common architectures. The first
is a simplified ResNet [6] architecture which was suggested by [17], which we term Madry’s
ResNet. Next, we evaluate our approach on two native ResNet architectures: ResNet18 and
ResNet34. See supplemental for details about the number of parameters of the different
architectures discussed in this paper.

Training Details We train all models using SGD with learning rate starting at 0.1 and
controlled by a Cosine Annealing scheduler [16]. The scheduler’s maximal number of itera-
tions Tmax is set to the number of epochs. We train all models for 200 epochs, the batch size
is 64 and the weight λ controlling the balance between CE-loss and our regularization loss
term is set to 10−6. We follow [14] and use ODIN and Mahalanobis perturbation amplitude
ε = 0.001 for CIFAR-10 and ImageNet-30 and ε = 0.006 for CIFAR-100 as In-Distribution
datasets. The temperature used to scale softmax values as in ODIN is set to T = 1000.
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Architecture Method AUROC FPR95 ID-Accuracy
↑ (%) ↓ (%) ↑ (%)

WideResNet-40-4

MSP 88.99 56.81 94.93
ODIN 90.11 35.31 94.93

Mahalanobis 89.33 35.48 94.93
Energy 90.04 35.26 94.93

MSDNet Exit@last

MSP 89.72 49.87 94.09
ODIN 90.33 29.30 94.09

Mahalanobis 82.84 75.19 94.09
Energy 90.48 33.62 94.09

MSDNet (dynamic exit) MOOD 91.26 28.05 94.13
Madry’s Resnet /+ GQ ODIN 90.51 / 91.94 36.57 / 30.19 92.19 / 93.29

ResNet18 /+ GQ ODIN 89.09 / 93.55 27.75 / 25.14 95.27 / 94.26
ResNet34 /+ GQ ODIN 89.03 / 89.08 35.33 / 27.63 95.21 / 95.56

Table 1: OOD detection performance: CIFAR-10 as In-Distribution: OOD detection
performance comparison between our method (termed GQ) and baseline methods: MSP [7],
ODIN [12], Mahalanobis [11], Energy [15] and MOOD [14]. All results are averaged across
10 datasets. AUROC is the Area Under the Receiver Operating Curve, FPR95 is the False
Positive Rate when the True Positive Rate (classifying ID samples as ID samples) is at 95%,
and ID-Accuracy is the classifier’s accuracy for In-Distribution samples. Best results in each
column are marked in Bold and second best in underline. See supplementary for detailed
results for each OOD test dataset. For the networks we trained, classical training with CE-
loss is separated from CE-loss+GQ with a ’/’. As can be seen, adding GQ to any of the
architectures improves results and our approach (GQ) achieves best results in all measures
compared to all baseline models.

3.2 Results

Does GQ Help OOD Detection? Tables 1 and 2 summarize our results compared to com-
mon Out-of-Distribution benchmarks. The tables show average performance metrics across
10 different OOD datasets for CIFAR-10 and CIFAR-100 as In-Distribution datasets. We
show the full evaluation details for all 10 OOD datasets in the Supplemental. Our approach
uses only in-distribution data and does not require any auxiliary OOD data. Therefore, the
reference methods and architectures we consider are those that do not require OOD samples
(or OOD exposure) at train time. In particular, we compare against the following baseline
methods: MSP [7], ODIN [12], Mahalanobis [11], Energy [15] and MOOD [14].

Does GQ Hurt In-Distribution Classification? Focusing on the CIFAR-10 case (Ta-
ble 1), we observe that adding GQ either improves AUROC by more than 4% (in the case of
ResNet18), at the cost of degrading in-distribution accuracy by 1%. In the case of Madry’s
Resnet, both AUROC and in-distribution accuracy improves by more than 1%. And in the
case of ResNet34 we observe no impact of GQ. When considering CIFAR-100 (Table 2), we
observe that adding GQ does hurt AUROC in the case of ResNet34, but in the rest of the
cases has a limited impact.

Fine Tuning and High Resolution Images: Experiments so far focused on images of
size 32×32 pixels. We next evaluate GQ on high resolution images. To do that, we follow [1]
and use ResNet-18 and ResNet-101 models pretrained on ImageNet. Instead of training these
networks from scratch, we fine-tune the pre-trained model solely with the LGQ loss term for
one epoch and use that as our network. As an In-Distribution dataset we take ImageNet-30,
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Architecture Method AUROC FPR95 ID-Accuracy
↑ (%) ↓ (%) ↑ (%)

WideResNet-40-4

MSP 77.10 77.51 76.90
ODIN 84.66 57.22 76.90

Mahalanobis 83.19 53.52 76.90
Energy 83.69 62.71 76.90

MSDNet Exit@last

MSP 78.33 76.71 75.43
ODIN 84.89 57.45 75.43

Mahalanobis 73.80 78.06 75.43
Energy 84.51 59.15 75.43

MSDNet (dynamic exit) MOOD 84.97 75.22 75.26
Madry’s Resnet /+ GQ ODIN 83.69 / 83.46 55.81/ 60.13 70.93 / 71.17

ResNet18 /+ GQ ODIN 85.95 / 86.88 63.42 / 60.31 78.40 / 77.72
ResNet34 /+ GQ ODIN 84.46 / 81.98 59.81 / 58.23 78.40 / 78.27

Table 2: OOD detection performance: CIFAR-100 as In-Distribution: OOD detection
performance comparison between our method (termed GQ) and baseline methods: MSP [7],
ODIN [12], Mahalanobis [11], Energy [15] and MOOD [14]. All results are averaged across
10 datasets. AUROC is the Area Under the Receiver Operating Curve, FPR95 is the False
Positive Rate when the True Positive Rate (classifying ID samples as ID samples) is at 95%,
and ID-Accuracy is the classifier’s accuracy for In-Distribution samples. Best results in each
column are marked in Bold and second best in underline. See supplementary for detailed
results for each OOD test dataset. For the networks we trained, classical training with CE-
loss is separated from CE-loss+GQ with a ’/’.

and resize all images in this experiment to be 254× 254 pixels. We compare our results
to that of [1]. In addition, we run pNML on top of our fine-tuned network. Results for
ResNet-18 are summarized in table 3. ResNet-101 results are found in the Supplementary
Material.

We observe that GQ outperforms the baseline method (both for ResNet-18 and ResNet-
101) in all cases. Further, observe that in the case of the saturated OOD datasets, GQ is
on par with pNML and that running pNML on top of GQ does not contribute much to the
AUROC detection results. On the other hand, in the case of ResNet-18 as a backbone, while
pNML struggles with detecting CIFAR-100 as OOD, we cut the error by 50%: from 92.15%
AUROC to 98.55% AUROC. Moreover, while the classification accuracy for Imagenet-30
for the pre-trained ResNet18 on Imagenet is 69.57%, one epoch of fine-tuning with LGQ
increases the classification accuracy to 80.87%.

This experiment demonstrate that our method can work with high resolution images, as
well as low resolution ones. In addition, it shows that it is possible to use GQ for fine tuning,
which lets us work with pre-trained models.

Is GQ sensitive to the tuning parameter λ? We validate the in-sensitivity of GQ to λ .
We experiment six lambda decade values from 10−6 to 10−1. AUROC and FPR95 metrics
stay stable - under 0.5% peak-to-peak for AUROC and ∼ 2.5% in FPR95. The latter metric
is inherently noisier since it is induced from a single point in the ROC curve. In-Distribution
accuracy falls by 0.7% for λ s up to 10−1. We refer the reader to the Supplemental for the
full table and evaluation details.
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Training Method Baseline pNML GQ GQ+pNML

ID-Accuracy 69.57 80.87 80.87 80.87

OOD

iSUN 95.58 99.74 99.53 99.47
LSUN (R) 95.51 99.72 99.63 99.47
LSUN (C) 96.89 99.77 99.77 98.92
Uniform 99.35 99.99 99.46 100
Gaussian 98.78 100 99.47 100
SVHN 99.18 99.99 99.99 99.90
CIFAR-10 89.99 99.79 99.85 99.20
CIFAR-100 92.15 92.15 99.63 99.08

Table 3: High Resolution Images OOD detection. OOD detection for the case of Imagenet-
30 as In-Distribution dataset and ResNet-18 as a backbone. Baseline is the case of the pre-
trained backbone. We cite AUROC results for the case of pNML from [1], we evaluate
AUROC for the LGQ fine-tuned networks and term it GQ, we apply pNML on top of the
fine-tuned network and denote it as GQ+pNML.

4 Related Work
ODIN [12] introduced sample perturbation as a way to detect OOD. Two other approaches
that follow this idea are Energy based models [15] and pNML [1] that we discuss next.

Energy Based Models Vs. GQ: [15] use the energy score of a sample as an inverse
score for the probability of the sample to be In-Distribution. They show how the derivative
of the Negative-Log-Likelihood (NLL) encourages the energy of the correct class label to go
down and the energy of all other labels to go up. Recall that for a classifier with logits fy(x),
the energy of a sample (x,y) is E(x,y) =− fy(x). The NLL with temperature in terms of the
energy is:

Lnll = E(x,y)∼Pin [− log
e fy(x)/T

∑
N
j=1 e f j(x)/T

] = E(x,y)∼Pin [
1
T
·E(x,y)+ log

N

∑
j=1

e−E(x, j)/T ] (8)

where Pin is the distribution of the training data (observe the similarity to equation 1). The
derivative of the loss with respect to the network parameters is:

∂Lnll(x,y;θ)

∂θ
=

1
T

∂E(x,y)
∂θ

· (1− p(Y = y|x))− 1
T ∑

j ̸=y

∂E(x, j)
∂θ

· p(Y = j|x) (9)

Since the sign of the gradient is positive for E(x,y) and negative for all j ̸= y the overall
gradient encourages low E(x,y) and high values for E(x, j). [15] observed that the gradient
of NLL w.r.t the network parameters pushes the energy of an ID sample downwards and
pulls up the energy of all other labels. Similarly to ODIN, [15] makes an observation about
the scores of the network, but do not change the way they are computed.

We, on the other hand, encourage the network to have peaky softmax. We push the
gradient of the ground truth softmax to be larger than all other gradients. This gradient
is calculated with respect to image space pixels (and not network parameters, as is done
in [15]). If we assume softmax to correspond to the energy - we want the energy of the
ground truth softmax to decay fast with changes in the input image. Faster than what? Faster
than it decays when observing the energy with respect to classes which are not the ground
truth.
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CIFAR-10 CIFAR-100
OOD pNML GQ pNML GQ
iSUN 97.5 97.3 87.6 87.9
SVHN 97.9 96.8 95.4 85.0

LSUN-C 95.6 98.5 88.1 94.6
ImageNet-C 96.2 98.2 88.6 92.6
ImageNet-R 96.6 96.4 88.5 87.1

LSUN-R 97.7 99.0 88.0 89.6
Table 4: pNML vs GQ (our) method: Comparison with pNML [1]. We show results for
CIFAR-10 (left columns) or CIFAR-100 (right columns) as the In-Distribution (ID) datasets.
Rows show the different OOD datasets we evaluated against. Bold numbers indicate best
results for a given ID and OOD dataset. Results of both methods are comparable.

pNML Vs. GQ: pNML, or predictive normalized maximum likelihood (pNML), was
recently suggested by [1] for OOD detection. They show that the generalization error of
pNML, denoted as the regret, can be used to detect OOD samples. Specifically, they work
on the last layer of the Neural Network and do the following: Given a test sample, they add it
to the training set with an arbitrary label, find the best-suited model, and take the probability
it gives to the assumed label. They repeat this procedure for every label and normalize to
get a valid probability assignment. Then they use the log normalization factor to compute
the regret, which is used as a confidence measure. Large regret means that the test sample is
more likely to be OOD. A nice feature of the pNML is that it does not make any assumption
about the distribution of the data (either during train or test).

We compare our method to the ODIN+pNML method suggested in [1]. Specifically,
they use a standard classification network (that is based on the DenseNet-BC-100 backbone),
followed by ODIN. Then, they take the perturbed sample after running the ODIN procedure
and use pNML to determine if it is OOD or not. Results are reported in table 4. As can be
seen, there is no clear winner method - AUROC scores are mixed 1.

pNML also uses perturbation of the test sample to detect if it is OOD, just like we do.
However, there are some major differences between the two approaches. We add a regu-
larization term (Gradient Quotient) to the loss function. In contrast, pNML is built on the
individual setting. For this setting, there is no assumption about how the training and the test
data are generated, nor about their probabilistic relationship. Therefore, pNML serves as a
complementary tool given a (trained) classifier. We, on the other hand, suggest a substitute
for the loss function.

Adversarial Learning The goal of untargeted adversarial attacks is to generate samples
such that they are misclassified. For targeted adversarial attacks, the misclassification is
guided to a specific (target) class. FGSM [5] and PGD [17] attacks are based on perturbations
made using the sign of the elements of the gradient of the cost function with respect to the
input. Our loss term, GQ, encourages the gap of softmax outputs to be large under input
perturbation. For adversarial attacks, this is a convenient platform. For targeted attacks and
a CE-loss term, one can derive the following corollary:

max
δ∈∆

(
ℓ(hθ (x+δ ),y)− ℓ(hθ (x+δ ),ytarget)

)
≡ max

δ∈∆

(
hθ (x+δ )ytarget −hθ (x+δ )y

)
(10)

where: ℓ is the CE-loss, hθ (x) is the logit vector for an input image x, the correct class

1The models in table 4 are evaluated using pNML code [1].
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label for this image is y, ytarget is the target lable, δ is the input perturbation and ∆ is the
set of allowable input perturbations. One interpretation of Equation 10 is that a targeted
attack maximizes the logit gap between the target class and the correct class. Our loss term
indirectly supports this through maximization of the logit gap for the correct class. Figure 2
demonstrates that our loss term can encourage the minimization of hθ (x+ δ )y. The latter
is one ingredient in the maximization of the the left hand side of equation 10. We remark
that a comprehensive study of the tie between adversarial learning and GQ is an interesting
direction for future research.

5 Conclusion
We take an observation made in the past about the behaviour of OOD samples and turns it
into a regularization term that can be used during training. This is done by introducing a
new loss function, termed Gradient Quotient (GQ), that encourages the network to calculate
softmax values that behave as expected by ODIN. This loss can be used either to train a
network from scratch, or just fine-tune it. We have shown theoretically why GQ encourages
the network to follow the observation made by ODIN and evaluate it extensively on a large
number of datasets and network architectures.

This work was partly funded by ISF grant 1549/19.
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