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1 Models Capacity

We show the number of parameters for various models in Table 1. The first three models
are the models demonstrated in our paper for GQ training. The last three models are those
mentioned in [7] and [1]. As can be seen, the size of the network ranges from fairly small
ones (less than 0.5M parameters) all the way up to networks with more than 20M parameters.

Model CIFAR-10 | CIFAR-100
Madry’s ResNet 467K 472K
ResNetl8 11.17M 11.22M
ResNet34 21.28M 21.32M
DenseNet-BC-100 769K 800K
MSDNet 2.8M 2.8M
WideResNet 8.9M 8.9M

Table 1: Models: Number of Parameters Architectures for CIFAR-10 and CIFAR-100
classification and their respective number of network parameters. We train the top three
architectures (Madry’s ResNet, ResNet18 and ResNet34) with our novel Gradient Quotient
regularization loss. We compare against methods using the rest of the architectures listed on
this table.

2 |S4(%) — Sp(x)| overlaid on an image

We visualize |Sy(%) — Sy(x)| for a particular image ( Figure 1(a)). Figure 1(b) shows V,S;
overlaid as a heat map on top of the original image. The left side of figure 1(b) is for a
ResNet-18 trained with CE-loss on CIFAR-10. The right side of figure 1(b) is for ResNet-18
trained with the CE-loss and L term. It is clear that when training with Lo, the gradients
V.S; are stronger, as expected. Figure 1(c) shows per-pixel increase of V,S; (in dB) of our
method w.r.t to the base CE-loss. As can be seen, most values our positive, indicating that
GQ does indeed strengthen V,.S;.
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(a) Original Image  (b) V.S overlaid on the image. (c) Gradient Amplification
left is training with CE-loss, per pixel [dB].
right training with CE-loss+GQ,

Figure 1: Gradient Visualization ResNet18 backbone trained on CIFAR-10 once classicaly
(solely with CE-loss) and once with CE-loss and GQ. (a) shows the original image, (b)
shows the gradient of the estimated logit w.r.t image pixels, overlaid on the original image,
(c) shows our per-pixel improvement in [dB].

3 Log-Softmax Gradient w.r.t Image-Pixels Distribution

We show a zoom in on the distributions of ||V, log Ss(x; T)||1 in Figure 2. Dashed lines repre-
sent distributions for networks trained classically (that is, with CE-loss). Solid lines represent
distributions for models trained with CE-loss and our loss term as a regularizer. When our
loss term is added, the distribution of ||V,logSs(x; T = 1000)||; for In-Distribution samples
is wider than the distribution of the same quantity for classically trained networks. This fig-
ure enables the observer to notice that all OOD datasets but one did not have significant sup-
port growth. This enables the detection of OOD samples: their ||V logS;(x; T = 1000)||; is
measured, ID samples will have higher scores on average and OOD samples will have lower
scores.

4 10 Datasets Benchmark Results

We follow [7] to evaluate AUROC and FPR95 scores on the full 10 datasets evaluation:
MNIST [6], K-MNIST [3], fashion-MNIST [9], LSUN (crop) [11], SVHN [8], Textures [2],
STL10 [4], Places365 [12], iSUN [10] and LSUN (resize) [11]. We evaluate these scores
for all combinations of In-Distribution datasets and models: we consider CIFAR-10 and
CIFAR-100 datasets as In-Distribution and Madry’s ResNet, ResNet-18 and ResNet-34 mod-
els. Scores are summarized in Table 2. The table shows AUROC and FPR95 scores for 10
different OOD datasets and 3 different models.

5 Is GQ sensitive to the tuning parameter A?

We test the sensitivity of the GQ regularizer to the trade-off parameter A. Specifically in this
case, the experiment is performed on the logit-based flavour of our method (instead of Lgg
evaluated for softmax values, we evaluate it for the logits). As a test point, we take Madry’s
ResNet on trained on CIFAR-10 with L as a regularizer. Since this is a high-capacity
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Figure 2: Log-Softmax Gradient w.r.t Image-Pixels Distribution. We show the Log-
Softmax Gradient w.r.t Image-Pixels Distribution (||Vlog S;(x; T)||1) for two models trained
on CIFAR-10: one trained solely with CE-loss (dashed lines) and one trained with our Lo
loss term (solid lines). The figure shows a Zoom-In on the distribution of ||V, logSs(x; T =
1000)||;. When our loss term is added, the distribution of ||V logSy(x;T = 1000)||; for
In-Distribution samples is wider than the distribution of ||V, logS;(x;T = 1000)||; for the
In-Distribution samples of the classically trained network. One can observe that all OOD
datasets but one did not have significant support growth.
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OOD-Dataset Architecture ID-Dataset | AUROC  FPR95  ID-Accuracy
g Diggin 1 { 1(%)
Madry’s ResNet CCIIISQE_—#O% 34912471 336.3516 3?%3
MNIST ResNet18 é:lg::l? _110% ;gglgé 624_6992 347‘33
ResNet34 CCI;IZA}?._;(% 32;%13 6270361 3?&;2
Madry’s ResNet Cclgﬁlg— _11(% gggg 2456186 3?%3
K-MNIST ResNet18 CCI;F:IE}I(% 33222 425:57% 347‘32
ResNet34 CCIE‘/:\}E__]I(% 3?% ;97513 3223
Madry’s ResNet (jclg::}i-ll()% gg 2(3) 171..1668 3?%3
fasbion-MNIST  ResNetlS cipap 100 | 0563 2543 7772
ResNet34 S | sem an 2
CIFAR-100 96.33 18.74 78.27
Madry’s ResNet &g::§11(2) gggzll 45 I..1380 3?%3
LSUN (crop) ResNet18 Cﬁfﬁi‘f& 3?23 ;8_6678 347‘:32
ReNedt  Cmaioo | 807 oo 7827
Madry’s ResNet CCIIIF:IE-_#(% 3(9)2? 9541282 3??3
SVEIN ReNetlS  Cipapoo | st s 717
ResNet34 C(:Igj?l?— _11(2) ggg? ;3;‘45‘ 32;2
Madry’s ResNet Ccllgﬁi _110% 2332 323; 3?%3
Textures ResNet18 CCIEAA}E_}I(% g?gg 3491‘3‘2 347‘22
ResNet34 CCIIIE:IE-_II(% 322; ?;22 32;3
Madry’s ResNet CCI;F:}?. _110% gggg gi?i 3?%2
STLA0 ReNeS Gpipioo | om0 705 7o
ResNet34 CIFAR-10 59.07 8391 95.56
CIFAR-100 76.55 80.46 78.27
Madry’s ResNet CCIE:AA}?-II(% gg?g 22;2 3?%3
Places365 ResNet18 Cclfﬁgll& 3;(1)2 g?gg 3§$g
ResNess A0 BLLSed e
Madry’s ResNet CCII;:}E__#O% g?z; %547‘2 3??3
iSUN ResNetS  Gpoion | oo 4res i
ReNeMt  cipapion | soss a0
Madry’s ResNet CCIIFF:[EE& gg?é égg? 3?%3
LSUN (resize) ResNetl8 CCIEAA}:{-—II(% g;ﬁg ;ggi 3%2
ResNet34 CCIIIE:IE _110% gggi igg}; 32;3

In-Distribution classifier accuracy.
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A | 1076 | 1055 | 107* | 103 | 102 | 107!
AUROC || 91.94 [ 92.29 | 91.93 | 92.05 | 92.44 | 92.60
FPR9S 30.19 | 28.15 | 30.51 | 29.47 | 2826 | 32.15

ID Accuracy || 93.29 | 93.06 | 92.80 | 92.75 | 92.59 | 92.60
Table 3: Sensitivity of GQ to A We evaluate the sensitivity of GQ to A when CIFAR-10 is
the in-distribution dataset (using the setting discussed in Table 1 in the main paper). Metrics
stay stable - under 0.5% peak-to-peak for AUROC and ~ 2.5% in FPR9S5. The latter metric
is inherently noisier since it is induced from a single point in the ROC curve. In-Distribution
accuracy falls by 0.7% for As up to 107!

ID [00))) Madry’s Resnet ResNet18 ResNet34
Ours Ours+pNML Ours Ours+pNML Ours Ours+pNML
t%) 1) | 1) 1% | 1% 1(%)
iSUN 96.65 88.30 97.61 94.47 92.82 96.45
LSUN (R) 97.46 87.73 98.10 95.48 94.27 97.40
LSUN (C) 98.28 93.96 98.26 99.30 97.07 97.55
CIFAR-10 Tiny-Imagenet-Resize | 94.64 86.44 96.50 93.00 89.53 95.13
Tiny-Imagenet-Crop 97.66 88.44 98.13 98.36 95.77 97.22
Uniform 99.31 99.99 99.19 99.98 99.91 100
Gaussian 99.39 100 99.16 100 99.94 100
SVHN 97.24 95.89 96.39 96.86 95.15 96.76
iSUN 83.22 64.05 94.39 79.52 91.49 94.12
LSUN (R) 84.22 62.98 94.80 79.39 91.56 95.48
LSUN (C) 93.98 81.82 92.23 56.34 88.99 90.14
CIFAR-100 Tiny-Imagenet-Resize 84.50 63.97 93.85 81.23 91.51 96.56
Tiny-Imagenet-Crop 92.02 70.13 93.38 62.20 92.38 94.37
Uniform 94.22 99.97 99.97 99.20 98.63 100
Gaussian 86.92 99.99 99.98 99.90 97.67 100
SVHN 88.95 76.86 96.11 80.47 94.86 98.13

Table 4: AUROC OOD detection scores for GQ and pNML on top of GQ We show
AUROC scores for OOD detection on 8 OOD datasets and 2 ID datasets. We evaluate the
scores for GQ trained networks and GQ trained networks with pNML on top of it. This
evaluation is done with the pNML [1] code base which scans for the optimal perturbation
magnitude €. Bold depicts highest (best) AUROC scores, for the same setting of OOD
dataset and network architecture.

experiment, we let the networks train for 100 epochs instead of the 200 epochs we evaluate
for CIFAR-10 and CIFAR-100 in the paper.

AUROC results are summarized in Table 3. Substantial degradation is not apparent even
after A changes by 5 orders of magnitude. We therefore conclude that GQ is insensitive to
the weight A, and that its contribution is mainly due to the loss term itself.

6 pNML applied over GQ trained models

We follow [1] and evaluate AUROC and FPR95 on a benchmark of 8 datasets: iSUN [10],
LSUN(R), LSUN (C) [11], Tiny-Imagenet Resize and Crop [5], Uniform and Gaussian
noises and SVHN [8]. We evaluate these scores for the case of models trained with our
method, GQ, and for the case of pNML applied on it. AUROC scores are summarized in
Table 4. FPR95 scores are summarized in Table 5. For pNML we use the penultimate layer
to extract features in all models. One can observe that as the network complexity is higher
(that is with more parameters) - pNML applied on GQ trained models, achieve better results
than GQ. We therefore conclude that the two tables highlight that pNML is sensitive to the
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ID (00))] Madry’s Resnet ResNet18 ResNet34
Ours Ours+pNML Ours Ours+pNML Ours Ours+pNML
1 (%) (%) 1 (%) (%) 1 (%) (%)
iSUN 18.25 48.06 14.49 28.40 24.37 18.63
LSUN (R) 14.11 48.49 10.78 25.73 20.63 12.62
LSUN (C) 9.43 25.08 9.96 3.18 15.17 12.65
CIFAR-10 Tiny-Imagenet-Resize 28.23 51.03 21.77 36.52 31.74 24.93
Tiny-Imagenet-Crop 12.90 46.24 10.50 8.17 18.16 16.02
Uniform 1.11 0 0.06 0 0.01 0
Gaussian 1.07 0 0.02 0 0 0
SVHN 13.42 21.25 18.39 14.25 22.36 16.86
iSUN 70.48 89.71 31.41 58.71 40.41 22.95
LSUN (R) 66.69 92.19 29.37 61.71 40.10 20.13
LSUN (C) 31.73 60.07 40.80 85.85 49.72 41.03
CIFAR-100 Tiny-Imagenet-Resize | 64.27 85.67 34.29 55.51 38.85 15.45
Tiny-Imagenet-Crop 42.83 81.33 37.22 80.12 36.53 25.53
Uniform 42.35 0 0 2.34 1.99 0
Gaussian 83.03 0 0 0.02 9.12 0
SVHN 52.75 80.39 24.57 53.52 30.24 9.32

Table 5: FPR95 OOD detection scores for GQ and pNML on top of GQ We show FPR95
scores for OOD detection on 8 OOD datasets and 2 ID datasets. We evaluate the scores for
GQ trained networks and GQ trained networks with pNML on top of it. This evaluation is
done with the pNML [1] code base which scans for the optimal perturbation magnitude €.
Bold depicts lowest (best) FPR9S5 scores, for the same setting of OOD dataset and network
architecture.

features extracted from the backbone to compute the regret.
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