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Abstract

Weakly-supervised semantic segmentation (WSSS) with image-level labels has been
widely studied to relieve the annotation burden of the traditional segmentation task. In this
paper, we show that existing fully-annotated base categories can help segment objects of
novel categories with only image-level labels, even if base categories and novel categories
have no overlap. We refer to this task as weak-shot semantic segmentation, which could
also be treated as WSSS with auxiliary fully-annotated categories. Recent advanced
WSSS methods usually obtain class activation maps (CAMs) and refine them by affinity
propagation. Based on the observation that semantic affinity and boundary are class-
agnostic, we propose a method under the WSSS framework to transfer semantic affinity
and boundary from base to novel categories. As a result, we find that pixel-level annotation
of base categories can facilitate affinity learning and propagation, leading to higher-quality
CAMs of novel categories. Extensive experiments on PASCAL VOC 2012 dataset prove
that our method significantly outperforms WSSS baselines on novel categories.

1 Introduction

Semantic segmentation [4, 11, 23, 35, 37, 39, 42, 55] is fundamental in computer vision and
has been greatly advanced through the rapid development of deep learning techniques. Tradi-
tional fully-supervised segmentation heavily relies on expensive pixel-level (full) annotations.
To solve this issue, segmentation paradigms requiring fewer or weaker annotations have grad-
ually attracted research attention, like weakly-/semi-supervised segmentation [22, 41, 47, 53]
and one-/few-shot segmentation [15, 24, 43, 44, 60]. However, these paradigms have limita-
tions in practical applications. Semi-supervised/few-shot segmentation can not handle new
categories with no pixel-level annotations. Weakly-supervised semantic segmentation (WSSS)
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Figure 1: Overview of our RETAB: (i) train a boundary network to transfer semantic boundary
from base to novel categories, (ii) train an affinity network to learn semantic affinity in a mixed-
supervised manner, and (iii) perform boundary-aware two-stage propagation to revise CAMs
based on the learned semantic boundary and affinity. Details can be found in Section 3.2.

leverages more accessible weak annotations, but the performance gap between WSSS and
fully-supervised segmentation is still non-negligible.

In this work, we propose a new learning paradigm called weak-shot semantic segmentation.
Assume that we have a fully-annotated segmentation dataset containing training samples of
only base categories (marked as base samples). We are also provided with extra weakly-
annotated training samples containing objects of base or novel categories (marked as novel
samples). Therefore, our problem can be considered as weakly-supervised segmentation with
an auxiliary fully-annotated dataset, but the set of well-labeled categories is limited. At test
time, our objective is to segment images where both base and novel categories may exist. The
critical problem in our task is transferring class-agnostic knowledge from base categories
to novel ones to enhance the segmentation performance of novel categories. Considering
different types of weak annotation, we focus on image-level labels in this work since it is
a popular research direction in WSSS [3, 12, 17, 52, 53, 56]. That is, base samples have
pixel-level labels while novel samples only have image-level labels in our problem.

We draw inspiration from classical WSSS methods to start our work. Until recently,
some advanced WSSS methods are based on Class Activation Map (CAM) [62] which
can effectively localize discriminative parts of objects by training a classification network
with image-level labels. The typical WSSS framework usually obtains CAM as the initial
response, expands the response region to acquire pseudo labels, and uses pseudo labels to
train a segmentation network. Among WSSS methods under this framework, PSA [1] is a
representative one with two main steps: learn semantic affinities between pair-wise pixels
within local neighborhoods on the feature map (i.e., affinity learning), and generate a transition
matrix to perform random walk [38] on CAMs (i.e., affinity-based propagation).

In this paper, we design our method under the typical WSSS framework and focus
on better expanding the initial response. With the assumption that semantic affinities and
boundaries are class-agnostic, we attempt to transfer these two types of information from
base to novel categories. Our method is called Response Expansion by Transferring semantic
Affinity and Boundary (RETAB), which contains an affinity learning step and an affinity-
based propagation step. In the affinity learning step, our goal is to design an affinity network
that learns semantic affinities from ground-truth labels of base samples and CAMs of novel
samples. Inspired by prior works on instance segmentation [18, 28], boundary knowledge
could function as an effective tool to assist with affinity learning. However, CAMs are noisy
on semantic boundaries, leading to imprecise semantic affinities for novel categories. To
solve this problem, we first consider boundary (resp., non-boundary) pixels as unconfident
(resp., confident) pixels [12]. Then we propose to train a boundary network supervised by
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base samples. The predicted boundaries of novel samples are used to split apart CAMs into
boundary regions and non-boundary regions. To filter out noisy supervisions in CAMs of
novel samples, we only consider non-boundary regions when we train the affinity network.

In the affinity-based propagation step, we propose a two-stage propagation strategy to
revise CAMs. In the first stage, random walk is restricted within the non-boundary regions.
Pixels with dominant category labels in the confident regions will be propagated to fit object
shapes. In the second stage, unconfident pixels in the boundary regions are propagated under
the guidance of confident pixels in the non-boundary regions. Hopefully, confident pixels can
regulate the random walk of unconfident ones and facilitate propagation on object boundaries.
After propagation, pseudo segmentation labels are obtained based on the revised CAMs
(revised responses). Finally, we train a segmentation network under the mixed supervisions
from ground-truth labels of base samples and pseudo labels of novel samples, which is the
only network used in the inference stage. In summary, our main contributions are:

* We study a novel paradigm called weak-shot semantic segmentation that utilizes full
annotations of base categories to benefit segmenting objects of novel categories with
only image-level labels.

* We propose a simple yet effective method called RETAB to transfer class-agnostic
semantic affinity and semantic boundary from base to novel categories under the
typical WSSS framework, together with a novel boundary-aware two-stage propagation
strategy. Our method can be integrated into any WSSS method under this framework.

¢ The effectiveness of RETAB is verified on PASCAL VOC 2012 dataset [16]. RETAB
significantly outperforms WSSS baselines and naive weak-shot segmentation baselines
on novel categories.

2 Related Works

Weakly-supervised Semantic Segmentation: Weakly-supervised semantic segmentation
(WSSS) [19, 31, 46, 48] has attracted considerable interest because weak annotations are
conveniently available. Most advanced WSSS methods with image-level labels [1, 8, 33,
51, 57, 58] are based on the class activation map (CAM) [62] obtained from a classification
network. “Seed, expand, and constrain”, three principles proposed by SEC [29], are followed
by many WSSS works. Some of them work on improving the seed or initial response [8, 32,
51]. The other works followed the coarse-to-fine strategy to expand or propagate responses [1,
25, 50, 59]. Compared with WSSS, our proposed weak-shot segmentation takes advantage
of full annotations in existing datasets, and can be considered as WSSS with an auxiliary
fully-annotated dataset containing limited well-labeled categories. In this work, our RETAB is
realized under the typical WSSS framework and focuses on the response expansion problem.
Few-/Zero-shot Semantic Segmentation: Few-shot semantic segmentation [15, 24, 44, 60]
and zero-shot semantic segmentation [7, 20] have been studied by plenty of works in recent
years. They both divide the whole category set into base categories and novel categories. Few-
shot semantic segmentation assumes that only a few training images are available for each
novel category, but pixel-level annotations are still required for novel categories. Zero-shot
semantic segmentation relies on category-level semantic representations that are often weak
and ambiguous, so the performance is far from satisfactory. Likewise, our proposed weak-shot
semantic segmentation has a split of base categories and novel categories. Differently, we
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Figure 2: Illustration of boundary-aware two-stage propagation. The predicted boundary map
is separated into boundary (‘bd’) pixels Spq and non-boundary (‘nbd’) pixels Sppq. In the
first stage only ‘nbd’ pixels are propagated, while in the second stage ‘nbd’ pixels guide the
propagation of ‘bd” pixels. See Section 3.2 for more details.

provide novel categories with weak annotations that are easily accessible and useful for
learning segmentation models.

Semi-supervised Semantic Segmentation: Typically, semi-supervised semantic segmenta-
tion [22, 26, 27, 40] addresses the issue of utilizing a set of well-labeled images to enhance
the segmentation quality for another set of unlabeled images [26, 40] or weakly-labeled im-
ages [22, 27]. In this work, our proposed weak-shot semantic segmentation follows a similar
idea to separate training samples into two sets with different annotation levels. Differently,
our task further splits categories into base ones and novel ones, which involves cross-category
knowledge transfer.

Weak-shot Learning: Actually, the weak-shot learning paradigm, i.e., full annotations
for base categories and weak annotations for novel categories, has been studied in image
classification [9], object detection [13, 34, 36, 61], and instance segmentation [5, 18, 23,
30, 63]. Weak-shot classification [9] supposes that base categories have clean image labels
and novel categories only have noisy ones. Weak-shot detection [36], also called mixed-
supervised [34] or cross-supervised [13] detection, requires that base categories have box-level
annotations while novel ones only have image-level labels. Weak-shot instance segmentation,
usually called partially-supervised instance segmentation, utilizes mask annotations of base
categories and only bounding boxes of novel ones. The abovementioned methods generally
transfer class-agnostic target (e.g., similarity, objectness) or learn the mapping from weak
annotation to full annotation. To the best of our knowledge, weak-shot semantic segmentation
has not been explored. Compared with weak-shot classification/detection, we focus on the
more challenging segmentation task. Compared with weak-shot instance segmentation, we
only utilize higher-available image-level labels instead of stronger boxes.

3 Methodology

In weak-shot semantic segmentation, we have base categories C” and novel categories C”,
satisfying C = C® UC" and C® NC" = 0. We assume that background bg belongs to base
categories, i.e., bg € C’. Training data contain A/” base samples and N novel samples with
no intersection. Base samples only contain base categories, whereas novel samples may
contain base or novel categories. We provide pixel-level labels for base samples and only
image-level labels for novel samples. We use ¢ to denote the ground-truth segmentation
label of the i-th pixel on the feature map for any base sample. Next, we will first take a glance
at PSA [1], which represents the typical WSSS framework. Then, we describe our RETAB
to transfer class-agnostic semantic affinity and boundary under this framework, which is
outlined in Figure 1. Finally, we discuss the training of the segmentation network.
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3.1 Review of CAM and PSA

As mentioned in Section 1, the typical WSSS framework [1, 8, 51] adopts CAM as the initial
response, which is obtained by training a classification network with image-level labels. CAM
M; of a typical category ! € C highlights the discriminative regions of this category. A group
of WSSS methods design models to augment CAM [8, 51], which could also function as the
initial response. Another group of WSSS methods attempts to design effective algorithms
to expand responses [1, 25, 50], in which PSA [1] is a representative one. Specifically, PSA
designs an AffinityNet to learn feature map 2, based on which pair-wise semantic affinity
d;; between pixel i and j is calculated by d;; = exp{ — Hfaff(xi,yi) — A (x;,y;) H | } In the
training stage, PSA only considers pixel pairs in neighbor set P:

P:{(ivj)|d((xiayi)7(xj’yj)) <7 l#]} ey

where ¥ is a search radius and d(-, -) represents Euclidean distance. The network is supervised
by affinity labels a;; obtained from CAMs (refer to [1] for details), where a;; = 1 for intra-
category pairs and a;; = O for inter-category pairs. The trained AffinityNet enforces the
predicted semantic affinity d;; to be close to 1 if pixel i and j b9long to the same category,
and close to 0 otherwise. Predicted d;; form the affinity matrix A, with which random walk
is performed on each M; to obtain the revised response of category /. Next, we describe our
RETAB that adapts response expansion for weak-shot semantic segmentation.

3.2 Pipeline of RETAB

Boundary Transfer. We first introduce transferring semantic boundaries from base cate-
gories to novel ones because this will facilitate our two major steps to expand responses. As
shown in Figure 1, we train a boundary network to predict a boundary map from the input
image. We use p; to represent the predicted boundary probability (after Sigmoid) for pixel i on
the feature map. During training, the boundary network is only supervised with base samples.
Boundary labels b} for base samples are derived from segmentation labels, and we denote
b¥ =1/0 for boundary/non-boundary pixels. In training, the model tends to suppress responses
in boundary regions, which is caused by the unbalanced boundary, foreground, and back-
ground pixels in the training samples. To address it, we split pixels into three subsets: boundary
pixels Spq = {i | b} = 1}, non-boundary foreground pixels Sg, = {i | b} = 0,c} € C*\{bg}}.
and non-boundary background pixels Sy, = {i | bf =0,¢; = bg}. Cross-entropy classification
losses are applied to three sets and merged to form the total loss of the boundary network:

|Spal 2

log(p;) 1 log(1—p;) 1 log (1 —p;)
Lp=-Y, 27|ng| 5 e v

i€Spq iEng iESbg

We expect the class-agnostic boundary knowledge embedded in the trained boundary model
to be transferred to novel categories. Therefore, we perform boundary prediction on novel
samples. To facilitate affinity learning and affinity-based propagation, we pre-set a threshold
7T to divide the boundary prediction for each novel sample into two parts: a boundary region
Sva = {i | pi > t} and a non-boundary region Sypq = {i | p; < 7}, as shown in Figure 2.

Affinity Learning with Mixed Supervision. In PSA, AffinityNet is supervised by coarse
affinity labels a;; obtained from CAMs, which are imprecise because CAMs only highlight
discriminative parts. We similarly implement an affinity network to predict pair-wise semantic
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affinities 4;; within local neighborhoods. Differently, we adopt more robust affinity labels aj-‘/-
by utilizing fully-annotated base samples and weakly-annotated novel samples to train the
network in a mixed-supervised manner (see Figure 1). The improvement comes from two
aspects. Firstly, affinity labels of base samples are purified through pixel-level annotations.
This helps the model learn better semantic affinities and facilitates novel categories by
assuming that semantic affinities are class-agnostic. For base samples, affinity labels aj-‘j
in P are obtained from the segmentation label, i.e., ajfj =1 when ¢} = cj, and a,’-‘j =0
otherwise. Secondly, pixel-level labels for novel samples are not given, so we can only obtain
coarse affinity labels from CAMs. Our idea is to leverage predicted boundaries to purify the
supervision. Since inaccurate pixels usually occur on CAM boundaries [12], we only use
affinity labels in non-boundary regions. Specifically, we narrow the set P in (1) to a cleaner
set Pppa by filtering out pixel pairs in boundary regions: Pypa = { (i, ) | d((xi, i), (xj,;)) <
Y,i#jand i,j¢ S‘bd}. For novel samples, our affinity labels a;; in Pnyq are obtained in the
same way as a;; (see Section 3.1). By filtering out noisy affinity labels, the model can learn
more accurate affinities from novel samples. Details of the cross-entropy loss to optimize the
affinity network can be found in PSA. The loss form remains unchanged and is suitable for all
samples by replacing a;; with a;; for base samples and replacing P with Pypq for novel ones.

Boundary-aware Two-stage Propagation. After training the affinity network, we predict
the semantic affinity 4;; between pixel i and j within the entire neighbor set P. Similar
to [1], we perform random walk on CAMs based on d;; which represents the transition
probability that pixel i should be propagated to pixel j. Distinctive from propagating on the
whole CAM for a single stage in the classical random walk, we adopt a boundary-aware
two-stage propagation strategy that concurrently utilizes semantic affinities and boundaries
(see Figure 2). In the first stage, the random walk is restricted within non-boundary regions
to prevent the disturbance from unconfident pixels on the boundaries, in which case the
boundary regions are analogous to isolation belts. Under this design, the pixels with dominant
category labels will be propagated to other pixels to fit object shapes and complete the masks.
Restricting the propagation area can be implemented by setting certain entries in the affinity
matrix to zero, leading to a sparse affinity matrix AW as follows:

Qij, Yi#j st i, j€Swa, (i,j)EP,
0, otherwise.

In the second stage, we hope that confident non-boundary pixels propagated in the first stage
can regulate the random walk process of boundary pixels, whereas unconfident boundary
pixels are not allowed to affect confident ones, so the sparse affinity matrix A should be

&ija Vl#‘] s.t.jEdea (17])67)’

0, otherwise.

We can observe that A1 is bidirectional, but A® contains unidirectional components, indi-
cating the critical difference between two-stage propagation and the original random walk
with only one bidirectional A. Our two-stage propagation is applied on CAM M, by firstly
using A(D) and secondly using A® as the affinity matrix in the random walk process. We
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Figure 3: Visualized pseudo labels on VOCI2 train set. Examples from top to bottom belong
to novel samples in fold 0,1,2,3, respectively. (a) image. (b) GT. (c) CAM. (d)(e) CAM+RW
and pesudo labels. (f) boundary prediction. (g)(h) CAM+RETAB and pesudo labels.

strictly follow [1] to perform random walk with affinity matrix without tuning parameters. In
detail, we first generate transition probability matrices corresponding to AW and A@) . Then,
the random walk in each stage is accomplished by iteratively multiplying the corresponding
transition matrix to M; until a predefined number of iterations is reached. We refer to the
CAMs after boundary-aware two-stage propagation as revised CAMs (or revised responses).

3.3 Mixed-supervised Segmentation

Since revised responses have smaller resolutions than input images, we first up-sample them to
the original sizes using bilinear interpolation. Then, we apply argmax on the category channel
of the concatenated revised responses to obtain pseudo segmentation labels of novel samples.
Finally, we can train any segmentation network in a fully-supervised manner using mixed
supervisions from ground-truth labels of base samples and pseudo labels of novel samples.
During inference, the segmentation network takes in a test image to predict categories within
CP UC" for each pixel because test images may contain either base or novel categories.

4 Experiments

4.1 Experimental Setting

Datasets and Evaluation Metrics. Following most WSSS works, we conduct experiments
on PASCAL VOC 2012 dataset [16] with 21 classes, including 20 foreground object classes
and a background class. The official dataset includes 1464 training images, 1449 validation
images, and 1456 test images. Following common practice in semantic segmentation, we adopt
an augmented training set with 10582 images from SBD [21]. Following the category split rule
in PASCAL-5! [44], which is commonly used in few-shot segmentation [15, 24, 49, 60], we
evenly divide the 20 foreground categories into four folds. Categories in each fold are regarded
as 5 novel categories, and the remaining categories (including background) are regarded as 16
base categories. We further divide 10582 training samples into base samples and novel samples
for each fold. Images containing only base categories are included as base samples, whereas
those containing at least one novel category are deemed novel samples. More separation
details for categories and samples are left to supplementary. For each fold, we retain full
annotations of base samples and only image-level labels for novel samples. During inference,
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we use the official validation set and test set to verify the segmentation performance. We adopt
Intersection-over-Union (IoU) as the evaluation metric. Due to the specific characteristics
of our task, we calculate mean IoU on all categories, base categories, and novel categories,
which are referred to as all-mloU, base-mloU, and novel-mloU, respectively.

Implementation Details. The boundary network is based on ResNet38 [54]. We concate-
nate feature maps in shallow layers and deep layers from three stages with 1 x 1 convolutions.
The concatenated feature map is followed by another 1 x 1 convolution with the output
dimension being one and a Sigmoid layer. The network structure of our affinity network is the
same as AffinityNet in PSA [1], which is also based on ResNet38. For both boundary network
and affinity network, we augment training images with color jittering, random cropping
(448 x 448), and horizontal flip. Both networks are trained with batch size 8 for eight epochs.
SGD [6] optimizer is adopted with weight decay of 5¢*. The learning rate is initialized as
0.001 (resp., 0.01) for the boundary network (resp., affinity network) and decreases following
the polynomial policy Iriter = IFinitial (1 — mai;eriter)“ with o = 0.9. We strictly follow WSSS
baselines [1, 51, 58] to adopt DeepLab [10] with ResNet38 [54] backbone pretrained on
ImageNet [14] as the segmentation network. The training schemes (data augmentation, batch
size, training epoch, optimizer, learning rate, and other parameters) remain unchanged for
segmentation. All experiments are conducted on 2 NVIDIA RTX 2080Ti GPUs with PyTorch.

Baselines. Our RETAB can be incorporated into any WSSS baseline under the typical
framework with three steps: 1) obtain CAM as the initial response, 2) propagate response
to acquire pseudo labels, and 3) train a segmentation network. We incorporate our method
into PSA [1], SEAM [51], and CPN [58]. They all use random walk with AffinityNet
(abbr: RW [1, 2]) as the second step, and the same segmentation network in the third
step. The difference lie in the first step. PSA directly uses “CAM” proposed in [62] as
the initial response, while SEAM and CPN design augmented responses based on their
proposed architectures. For ease of representation, we use “CAM+RW”, “SEAM+RW”, and
“CPN+RW” to denote the overall pipelines of baselines. For fairness, when integrating our
method into each baseline, we use the same initial response and segmentation network as this
baseline, resulting in our “CAM+RETAB”, “SEAM+RETAB”, and “CPN+RETAB”.

Hyper-parameters. During boundary prediction, we set the threshold 7 as 0.5 via cross-
validation (see supplementary for detailed discussion). For the other hyper-parameters (search
radius y =5, the parameters to generate affinity labels a;; for novel samples and the parameters
for random walk in each stage of our two-stage propagatlon) we use the default values in
WSSS baseline PSA [1], SEAM [51], and CPN [58] without further tuning.

4.2 Evaluation on Pseudo Segmentation Labels

We evaluate pseudo segmentation labels by assessing CAMs before/after propagation on
VOCI12 train set. Figure 3 visualizes the pseudo segmentation labels of some novel samples
by comparing “CAM+RW” with “CAM+RETAB”. As shown, pseudo labels generated by
RETAB better adapt to object boundaries than the classical random walk, demonstrating
RETAB?’s transferability of semantic affinity and boundary from base categories to novel ones.
More quantitative analyses and visualizations results can be found in the supplementary.
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Method fold 0 fold 1 fold 2 fold 3
c ¢t ¢ ¢c ¢ccr c cbocroc ¢ ocr

SSDD [45] 65.5 67.6 58.8 65.5 64.5 68.7 65.5 63.5 72.1 65.5 68.0 57.7
BES [12] 66.6 68.8 59.6 66.6 64.9 71.9 66.6 64.7 72.6 66.6 69.3 57.8
SvM [59] 66.7 67.5 64.2 66.7 65.8 69.7 66.7 65.6 70.6 66.7 69.6 57.7
CAM+RW [1] 63.7 65.4 58.1 63.7 63.7 63.8 63.7 61.4 71.0 63.7 65.8 56.8
CAM+RW((seggt) 73.8 78.5 58.6 74.8 76.5 69.5 73.7 74.4 71.5 73.9 79.2 56.9
CAM+RW (affgt+seggt) 75.2 78.7 64.0 75.3 76.5 71.5 74.6 75.2 72.7 74.1 79.3 57.5
CAM+RETAB 76.3 78.8 68.0 76.0 76.1 75.9 75.4 75.4 75.6 74.8 79.2 60.8
SEAM+RW [51] 65.7 67.8 59.0 65.7 64.7 68.9 65.7 63.7 72.3 65.7 68.2 57.9

SEAM+RW ((seggt) 74.0 78.7 59.1 74.5 75.6 71.1 73.5 73.3 74.0 73.7 78.1 59.6
SEAM+RW (affgt+seggt) 74.9 78.9 62.1 752 76.4 71.4 74.3 74.3 74.3 74.2 78.7 59.8

SEAM+RETAB 75.5 78.9 64.6 76.0 76.6 74.0 75.1 75.0 75.6 74.8 79.0 61.5
CPN+RW [58] 68.5 70.7 61.5 68.5 66.8 73.8 68.5 66.6 74.5 68.5 71.2 59.7
CPN+RW(seggt) 74.7 78.6 62.4 755 76.0 74.0 75.5 75.7 74.8 74.4 78.8 60.2
CPN+RW(affgt+seggt) 76.1 79.0 66.8 76.5 76.8 75.7 75.6 75.6 75.5 74.9 79.3 60.7
CPN+RETAB 76.6 79.1 68.8 76.7 76.7 76.7 75.9 75.8 76.2 75.3 79.3 62.4
Fully Oracle 779 79.1 744 779 77.7 78.7 779 76.4 829 77.9 79.6 72.6

Table 1: Comparison of segmentation performance on VOC12 test set. Columns marked by
C/CP/C" represents all-/base-/novel-mIoU. We have five groups of methods. The first group
includes some popular WSSS methods. The second / third / fourth group represents the WSSS
baseline PSA / SEAM / CPN, together with our created weak-shot segmentation baselines
(seggt and affgt+seggt), and our RETAB. The fifth group is a fully-supervised method. Except
the first group, all experiments use DeepLab [10] with ResNet38 [54] backbone.

4.3 Evaluation on Segmentation Performance

Naturally, the fully-supervised (resp., weakly-supervised) setting serves as the upper (resp.,
lower) bound of our weak-shot setting. In this subsection, we compare the final segmentation
results of our method with the upper/lower bound. Quantitative results on VOC12 test set
are summarized in Table 1 (see supplementary for results on the val set). “CAM+RW”,
“SEAM+RW” and “CPN+RW” represent three WSSS baselines we use. We correspondingly
create three naive weak-shot segmentation baselines, denoted by “(seggt)”’. The simple
modification is to train the final segmentation step with the mixed supervisions of ground-
truth segmentation labels for base samples and pseudo segmentation labels generated by
WSSS baselines for novel samples. Also, we create three augmented weak-shot segmentation
baselines, denoted by “(affgt+ seggt)”. Based on naive baselines, these augmented baselines
further utilize ground-truth affinity labels of base samples when training the affinity network.
Our methods are represented by “CAM+RETAB”, “SEAM+RETAB” and “CPN+RETAB”.
“Fully Oracle” is a reproduced fully-supervised baseline. As illustrated in Table 1, our RETAB
consistently and significantly outperforms WSSS baselines and weak-shot baselines for novel
categories on all four folds, verifying the effectiveness of knowledge transfer across categories.
Compared with “Fully Oracle”, our method can recover 97.7% ~ 100% of its bound for base
categories and 83.7% ~ 97.5% of its bound for novel categories, implying that RETAB
successfully narrows the gap between weakly-supervised and fully-supervised segmentation.
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Fold 0
bird

Fold 3

sheep

Pod

Figure 4: Visualized segmentation results of novel categories on VOC12 val set. Examples
from top to bottom contain objects of novel categories (marked as blue on the left side) in
fold 0,1,2,3, respectively. (a) image. (b) GT label. (c) boundary prediction. (d) CAM+RW.
(e) CAM+RETAB. (f) SEAM+RW. (g) SEAM+RETAB. (h) CPN+RW. (i) CPN+RETAB.

Figure 4 shows some visualizations on segmenting objects of novel categories with different
methods (see supplementary for more visualizations). Our RETAB works better in recovering
object shapes, especially in boundary regions.

4.4 Ablation Studies and Generalization to Other Settings

We carefully analyze the functionality of boundary transfer, semantic affinity, and boundary-
aware two-stage propagation, respectively. Different parts in our method are verified to
demonstrate the source of improvement for the segmentation results. A significance test
is also included. For more practical application, we generalize our weak-shot semantic
segmentation task to two settings: 1) generalization to potential novel categories in the
background, and 2) generalization to fewer fully-annotated training data. We observe that our
RETAB could generalize to discover potential cues of novel categories in the background of
base samples with a simple follow-up self-training step. We also observe that RETAB can
use a small proportion of base samples to facilitate a large number of novel samples. These
detailed results can be found in the supplementary.

5 Conclusion

This paper has proposed a novel paradigm called weak-shot semantic segmentation that
utilizes pixel-level annotations of base categories to improve the segmentation performance
on novel categories with only image-level labels. Under the typical WSSS framework, a
simple yet effective method called RETAB is developed to expand response regions by
transferring class-agnostic semantic affinity and boundary. Our work provides a simple yet
effective baseline to promote future research on weak-shot semantic segmentation.
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