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In this document, we provide additional materials to support our main submission. In
Section 1, we introduce the basic splits of PASCAL VOC 2012 dataset [4] used in the main
paper. All the experiments in Section 2, 3, 4, 5, 6, 7, 8, 9 and 10 depend on these basic splits.
In Section 2, we analyze the hyper-parameters in our model. In Section 3, 4 and 5, we perform
ablation studies to verify the functionalities of different parts in our method. In Section 6, we
analyze the source of improvement for the final segmentation results. In Section 7, 8, 9 and 10,
we supplement experiments in the main paper with more quantitative and qualitative results
of pseudo segmentation labels and final segmentation results. In Section 11 and 12, we then
extend the basic splits to more general ones to deal with additional problems in weak-shot
semantic segmentation. Finally, we discuss the limitations and future works in Section 13.

1 Basic Splits of PASCAL VOC 2012 Dataset
As mentioned in Section 4.1 in the main paper, we follow the category splits in PASCAL-
5i [6] to form four basic folds, i.e., fold 0, fold 1, fold 2, and fold 3. In fold i (0 6 i 6 3),
categories with indices 5i+1,5i+2,5i+3,5i+4,5i+5 are regarded as 5 novel categories
and the remaining categories (including “background”) are regarded as 16 base categories.
The detailed split of base categories and novel categories for each fold is shown in Table 3.

We use the augmented training set (trainaug set) with 10582 images from SBD [5] as the
complete training set for our experiments conducted on PASCAL VOC 2012 dataset. Based
on the abovementioned category splits, we further divide 10582 training samples into base
samples and novel samples for each fold. The images containing only base categories are
included as base samples, whereas those containing at least one novel category are deemed
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trainaug train
fold N b N n N b N n

0 7746 2836 1051 413
1 6978 3604 950 514
2 5040 5542 800 664
3 8437 2145 1091 373

Table 1: The number of base samples and novel samples in fold i (0 6 i 6 3). N b and N n

represent the number of base samples and novel samples, respectively.

fold sample acc. prec. recall F1-score

0 base 0.831 0.594 0.777 0.612
0 novel 0.854 0.597 0.774 0.622

1 base 0.846 0.593 0.777 0.615
1 novel 0.836 0.594 0.743 0.614

Table 2: Analysis of boundary prediction results on PASCAL VOC 2012 train set. Base
samples and novel samples in fold 0 and fold 1 are evaluated separately.

novel samples. The total count of base samples and novel samples in each fold are listed in
Table 1 for both the trainaug set and the official train set.

Following recent WSSS researches [1, 3, 8, 11], we adopt trainaug set for model train-
ing, train set for evaluating CAMs or pseudo labels, and val set or test set for evaluating
segmentation results.

2 Analysis of Hyper-parameter
Recall that we use a threshold τ to divide the boundary prediction results into boundary regions
and non-boundary regions, as discussed in Section 3.2 in the main paper. To investigate the
impact of τ , we conduct experiments by trying different τ in the range of [0.1,0.9] on all four
folds. Table 4 summarizes the train set mIoUs of revised responses, which utilize CAM [12]
as the initial response and our proposed RETAB as the propagation strategy. We can observe
that most high mIoUs occur when τ lies in the range of [0.3,0.7]. In our implementation, we
consistently set τ = 0.5 in all experiments.

3 Analysis of Boundary Transfer
To demonstrate the effectiveness of boundary transfer, we evaluate boundary predictions on
PASCAL VOC 2012 train set. Figure 1 visualizes some boundary maps of base samples
and novel samples predicted by our boundary network on fold 0 and fold 1. As discussed
in Section 3.2 in the main paper, the predicted boundary map can be transformed into a
binary prediction map, where 1 and 0 respectively denote the pixels in boundary regions and
non-boundary regions. Ground-truth binary boundary labels for evaluation can be obtained
by transforming the semantic boundary labels in SBD [5] into class-agnostic ones. Then
we can evaluate the performance of the boundary network in a binary classification manner.
As shown in Table 2, we respectively calculate the accuracy, precision, recall, and F1-score

Citation
Citation
{Ahn and Kwak} 2018

Citation
Citation
{Chen, Wu, Fu, Han, and Zhang} 2020

Citation
Citation
{Wang, Zhang, Kan, Shan, and Chen} 2020

Citation
Citation
{Zhang, Lin, Liu, Cai, and Kot} 2020

Citation
Citation
{Zhou, Khosla, Lapedriza, Oliva, and Torralba} 2016

Citation
Citation
{Hariharan, Arbel{á}ez, Bourdev, Maji, and Malik} 2011



SIYUAN ZHOU: WEAK-SHOT SEMANTIC SEGMENTATION BY RETAB 3

class bg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fold 0 b n n n n n b b b b b b b b b b b b b b b
fold 1 b b b b b b n n n n n b b b b b b b b b b
fold 2 b b b b b b b b b b b n n n n n b b b b b
fold 3 b b b b b b b b b b b b b b b b n n n n n

Table 3: The basic splits of 21 categories for PASCAL VOC 2012 dataset. In each fold, ‘b’
denotes a base category and ‘n’ denotes a novel category. bg is the background category.

fold 0 fold 1 fold 2 fold 3
τ C Cb Cn C Cb Cn C Cb Cn C Cb Cn

0.1 69.0 71.7 60.1 68.6 68.3 69.7 68.6 68.1 70.3 69.0 70.8 63.3
0.2 70.3 72.8 62.3 70.3 70.0 71.0 70.1 69.4 72.3 70.1 71.9 64.1
0.3 70.9 73.4 62.8 70.8 70.5 71.9 70.7 70.0 72.9 70.3 72.3 64.1
0.4 71.0 73.7 62.6 71.1 70.9 71.6 70.8 70.1 73.0 70.2 72.4 63.4
0.5 71.2 74.0 62.5 71.3 71.2 71.6 70.9 70.2 73.3 70.1 72.4 62.8
0.6 71.1 74.0 62.1 71.3 71.3 71.4 70.9 70.2 73.2 70.1 72.5 62.3
0.7 71.2 74.2 61.8 71.4 71.5 71.2 70.9 70.4 72.7 69.9 72.4 61.9
0.8 71.1 74.1 61.7 71.3 71.4 71.0 70.9 70.4 72.6 69.8 72.4 61.5
0.9 71.1 74.1 61.5 71.3 71.4 70.8 70.8 70.3 72.5 69.4 72.3 61.2

Table 4: Different choices of hyper-parameter τ on four folds. The mIoU evaluation of revised
responses for “CAM+RETAB” is conducted on PASCAL VOC 2012 train set.

for base samples and novel samples in the train set on fold 0 and fold 1. As illustrated,
although the boundary network is trained on only base samples, it also performs well in
predicting boundaries for novel samples, verifying the effectiveness of knowledge transfer
across categories.

4 Analysis of Semantic Affinity
In this subsection, we compare the semantic affinity learned by PSA [1] and our RETAB on
PASCAL VOC 2012 train set. The predicted semantic affinities âi j are transformed into the
binary values â′i j for both base samples and novel samples: â′i j = 1 if âi j > 0.5, and â′i j = 0
otherwise. Ground-truth semantic affinities a∗i j could be obtained by the method described
in Section 3.2 in the main paper. Then we can evaluate the predicted semantic affinities
within neighbor set P (see Eqn.(1) in the main paper) in a binary classification manner.
We respectively calculate the accuracy, precision, recall, and F1-score for base samples and
novel samples in the train set on fold 0 and fold 1. Table 5 displays the quantitative results
comparing PSA and our RETAB. As illustrated, our method learns more satisfying semantic
affinity for both base samples and novel samples than PSA, verifying RETAB’s transferability
of semantic affinity from base categories to novel categories.

In Table 6, we conduct ablation studies on PASCAL VOC 2012 train set to investigate the
semantic affinities learned by affinity networks under different training strategies. We show
the performance of revised responses for different strategies using the same initial response
and the same propagation method. As shown in Table 6, using pseudo affinity labels of all
samples to train the affinity network (row 1) results in low mIoU scores. When we only
utilize ground-truth affinity labels of base samples for training (row 2), the model witnesses a
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                         base samples in fold 0                                                    base samples in fold 1

                              novel samples in fold 0                                                   novel samples in fold 1

         Image               Prediction          Binary Label               Image               Prediction          Binary Label

Figure 1: Visualizations on boundary prediction results for base samples and novel samples
in fold 0 and fold 1 of PASCAL VOC 2012 train set. We display several predicted boundary
maps together with their corresponding ground-truth boundary maps.

PSA RETAB
fold sample acc. prec. recall F1 acc. prec. recall F1

0 base 0.811 0.583 0.664 0.597 0.841 0.633 0.763 0.662
0 novel 0.823 0.577 0.643 0.591 0.862 0.639 0.745 0.669

1 base 0.821 0.578 0.650 0.591 0.852 0.634 0.762 0.664
1 novel 0.802 0.587 0.667 0.600 0.836 0.628 0.731 0.653

Table 5: Analysis on semantic affinities for base samples and novel samples on PASCAL
VOC 2012 train set. Semantic affinities predicted by PSA and our RETAB are evaluated on
fold 0 and fold 1.

significant performance improvement because more precise semantic affinities can be learned,
especially on boundary regions. This phenomenon implies that even if our RETAB (boundary
network and affinity network) is only supervised on base samples, affinities could also be
transferred well to novel samples. This advantage makes our RETAB more practical in
real-world applications because we can directly use a RETAB pretrained on base samples
to perform inference on extensive novel samples without further fine-tuning. In row 3 of
Table 6, we further use pseudo affinities of novel samples to train the affinity network in
a mixed-supervised manner, which slightly enhances the performance on novel categories.
After filtering out noisy supervisions in boundary regions of CAM for novel samples (row 4),
we finally obtain the best strategy used in our RETAB.

5 Analysis of Boundary-aware Two-stage Propagation
By taking fold 0 and fold 1 as examples, we analyze the functionality of boundary-aware
two-stage propagation on Pascal VOC 2012 train set. We compare three propagation methods:
1) “one-stage”: classical one-stage random walk [1], 2) “nbd+bd”: separately propagate in
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Supervision for Supervision for fold 0 fold 1
base samples novel samples all base novel all base novel

pseudo pseudo 63.6 66.4 54.8 63.6 63.1 65.2
GT - 70.8 73.8 61.0 70.6 70.8 69.8
GT pseudo 70.7 73.7 61.2 70.9 71.0 70.5
GT pseudo+filter 71.2 74.0 62.5 71.3 71.2 71.6

Table 6: The ablation study of semantic affinities learned by affinity networks with different
training strategies. Utilizing “CAM” as the initial response and our two-stage propagation as
the expansion algorithm, we show the mIoU evaluation for revised responses on PASCAL
VOC 2012 train set. GT: use ground-truth affinity labels obtained from pixel-level segmen-
tation labels. pseudo: use pseudo affinity labels generated from “CAM”. filter: filter out
coordinate pairs in boundary regions.

Propagation strategy fold 0 fold 1
all base novel all base novel

one-stage 70.7 73.7 61.1 70.3 71.1 67.9
nbd+bd 66.0 68.4 58.3 65.7 65.4 66.8

BTP 71.2 74.0 62.5 71.3 71.2 71.6
Table 7: The ablation study of different propagation strategies on fold 0 and fold 1 of Pascal
VOC 2012 train set. We show the mIoU evaluation for revised responses, using “CAM” as the
initial response and the best semantic affinities learned by our RETAB. one-stage: classical
random walk. nbd+bd: separately propagate in the non-boundary regions and in the boundary
regions. BTP: our proposed boundary-aware two-stage propagation strategy.

the non-boundary region and in the boundary region, where confident pixels can not guide
the propagation of unconfident ones, 3) “BTP”: our boundary-aware two-stage propagation
as described in Section 3.2 in the main paper. We adopt CAM [12] as the initial response
and use the best semantic affinities learned by our RETAB. The results are summarized in
Table 7. As illustrated, our proposed “BTP” outperforms both “one-stage” and “nbd+bd”
especially on novel categories, verifying the importance of utilizing confident pixels to guide
the propagation of unconfident ones.

6 Source of Improvement
Table 8 gives an ablation study of each part in our approach that contributes to the improvement
of the final segmentation results on PASCAL VOC 2012 val set. Experiments are conducted
on fold 0. In Table 8, row 1 is the WSSS baseline PSA (CAM+RW) [1]. Row 2 is our
created naive weak-shot segmentation baseline “seggt” and row 3 is the augmented weak-
shot segmentation baseline “affgt+seggt”. Except row 1, all experiments adopt ground-truth
segmentation masks of base samples so as to train the segmentation network in a mixed-
supervised manner. Comparing row 3 with row 2, we find that applying ground-truth affinity
labels of base samples to train the affinity network can improve 0.3 base-mIoU (%) and 7.3
novel-mIoU (%). After filtering out noisy affinity labels in novel samples, the model in row 4
gains another 1.9 improvement on novel-mIoU (%). Comparing row 5 with row 4, replacing
the original random walk with our proposed boundary-aware two-stage propagation further
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WSSS affgt FILTER BTP seggt all-mIoU base-mIoU novel-mIoU

X 61.7 62.8 58.1
X X 71.9 76.3 57.8
X X X 73.9 76.6 65.1
X X X X 74.3 76.6 67.0
X X X X X 75.0 76.8 69.2

Table 8: The ablation study for each source of improvement in RETAB. Models are trained
on fold 0 and the final segmentation results are evaluated on VOC12 val set. WSSS: weakly-
supervised semantic segmentation baseline PSA [1]. affgt: use ground-truth affinity labels
for base samples when training the affinity network. FILTER: filter out coordinate pairs in
boundary regions for novel samples. BTP: boundary-aware two-stage propagation. seggt: use
ground-truth segmentation labels for base samples when training the segmentation network.

CAM CAM+RW CAM+RW(affgt) CAM+RETAB
fold all base novel all base novel all base novel all base novel

0 48.0 51.4 37.4 61.0 63.8 52.3 69.7 73.1 58.7 71.2 74.0 62.5
1 48.0 47.8 48.8 61.0 61.0 61.2 70.0 71.0 66.6 71.3 71.2 71.6
2 48.0 47.2 50.7 61.0 58.9 67.9 69.7 69.6 70.0 70.9 70.2 73.3
3 48.0 47.6 49.4 61.0 62.0 57.9 69.0 71.9 59.8 70.1 72.4 62.8

SEAM SEAM+RW SEAM+RW(affgt) SEAM+RETAB
fold all base novel all base novel all base novel all base novel

0 55.4 58.8 44.6 63.6 66.4 54.8 67.5 71.1 56.1 68.2 71.2 58.4
1 55.4 55.3 55.7 63.6 63.1 65.2 67.2 67.1 67.7 68.1 67.6 69.7
2 55.4 53.2 62.3 63.6 60.9 72.4 67.0 65.1 73.2 67.9 65.7 74.8
3 55.4 56.0 53.6 63.6 65.5 57.6 66.7 69.4 58.2 67.5 69.7 60.7

CPN CPN+RW CPN+RW(affgt) CPN+RETAB
fold all base novel all base novel all base novel all base novel

0 57.4 60.5 47.5 67.8 70.5 59.3 70.5 73.0 62.3 71.5 73.3 65.9
1 57.4 55.9 62.3 67.8 66.6 71.6 71.2 70.7 72.9 72.1 71.3 74.6
2 57.4 56.3 61.0 67.8 66.3 72.7 71.6 70.9 74.0 72.3 71.5 75.0
3 57.4 58.6 53.8 67.8 69.3 62.9 70.2 72.2 64.0 70.7 72.4 65.1

Table 9: Mean IoU evaluation of initial responses and revised responses on VOC12 train
set. We adopt three initial responses, i.e., “CAM” [12], “SEAM” [8], and “CPN” [10]. We
compare three response propagation methods: “RW”, “RW(affgt)”, and “RETAB”. “RW” is
introduced in PSA [1]. “RW(affgt)” is based on “RW” and further uses ground-truth affinity
labels of base samples when training the affinity network. “RETAB” is our proposed method.

enhances 2.2 novel-mIoU (%), resulting in RETAB with the best mIoUs.

7 Evaluation on Pseudo Segmentation Labels
We evaluate pseudo segmentation labels by assessing CAMs before/after propagation on
PASCAL VOC 2012 train set. To verify the transferability of our method, we adopt three
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Method fold 0 fold 1 fold 2 fold 3
C Cb Cn C Cb Cn C Cb Cn C Cb Cn

SSDD [7] 64.9 67.2 57.5 64.9 62.9 71.2 64.9 63.2 70.4 64.9 67.8 55.7
BES [3] 65.7 67.0 61.7 65.7 63.8 71.6 65.7 64.7 68.8 65.7 68.7 56.0
SvM [11] 66.6 66.3 67.8 66.6 65.9 68.9 66.6 66.2 68.1 66.6 69.6 57.0

CAM+RW [1] 61.7 62.8 58.1 61.7 61.3 62.8 61.7 60.5 65.3 61.7 63.7 55.1
CAM+RW(seggt) 71.9 76.3 57.8 73.7 74.9 69.9 72.9 74.1 69.0 72.9 78.3 55.8
CAM+RW(affgt+seggt) 73.9 76.6 65.1 74.6 75.0 73.3 73.6 74.3 71.4 73.2 78.4 56.6
CAM+RETAB 75.0 76.8 69.2 75.7 75.6 76.1 74.2 74.9 72.0 73.7 78.4 58.5

SEAM+RW [8] 64.5 66.2 59.0 64.5 63.3 68.3 64.5 62.9 69.7 64.5 67.1 56.2
SEAM+RW(seggt) 72.4 76.2 60.2 74.1 74.5 72.6 72.6 72.9 71.7 73.2 78.2 57.4
SEAM+RW(affgt+seggt) 73.3 76.5 63.1 74.6 74.7 74.3 73.1 73.3 72.5 73.8 78.7 58.1
SEAM+RETAB 74.0 76.6 65.4 74.9 75.0 74.5 73.6 73.7 73.0 74.3 79.1 58.9

CPN+RW [10] 67.8 69.1 63.8 67.8 65.9 73.7 67.8 66.8 70.9 67.8 70.8 58.1
CPN+RW(seggt) 73.7 76.4 65.0 74.9 75.0 74.6 74.0 74.9 71.0 73.5 78.1 58.8
CPN+RW(affgt+seggt) 74.7 76.8 68.1 75.4 75.5 75.2 74.3 75.0 71.9 73.9 78.6 59.0
CPN+RETAB 75.1 76.7 70.0 75.9 75.7 76.5 74.8 75.3 73.3 74.5 79.0 60.3

Fully Oracle 76.6 76.8 76.1 76.6 76.2 78.1 76.6 75.4 80.6 76.6 79.2 68.2
Table 10: Comparison of segmentation performance on PASCAL VOC 2012 val set. Columns
marked by C, Cb and Cn represents all-mIoU, base-mIoU and novel-mIoU, respectively. We
have five groups of methods. The first group includes some popular WSSS methods. The
second / third / fourth group represents our WSSS baseline PSA / SEAM / CPN, together with
our created weak-shot segmentation baselines (seggt and affgt+seggt), and our implemented
RETAB with the same initial response. The fifth group is a fully-supervised method. Except
the first group, all experiments use DeepLab [2] with ResNet38 [9] backbone.

initial responses: “CAM”, “SEAM” and “CPN”. Table 9 compares the performance of three
response expanding methods, i.e., “RW”, “RW(affgt)” and our proposed “RETAB”, where
“RW(affgt)” is based on “RW” and further uses ground-truth affinity labels of base samples
when training the affinity network. As illustrated, “RW(affgt)” greatly advances base-mIoUs
since more accurate semantic affinities in base samples are learned. Still, this method can
not achieve satisfying results on novel categories. By comparison, our “RETAB” achieves
consistently higher mIoU results than baselines on all four folds. In detail, “RETAB” improves
9.1∼ 10.3 all-mIoU (%), 10.2∼ 11.3 base-mIoU (%) and 4.9∼ 10.4 novel-mIoU (%) when
compared with “RW” in PSA1, improves 3.9∼ 4.6 all-mIoU (%), 4.2∼ 4.8 base-mIoU (%)
and 2.4∼ 4.5 novel-mIoU (%) when compared with “RW” in SEAM, and improves 4.3∼ 6.6
all-mIoU (%), 4.0∼ 7.8 base-mIoU (%) and 3.2∼ 11.1 novel-mIoU (%) when compared with
“RW” in CPN. These improvements come from two aspects. On the one hand, we utilize more
confident semantic affinities by incorporating ground-truth labels and boundary predictions in
affinity learning. On the other hand, two-stage propagation makes it possible that confident
pixels guide the propagation of unconfident ones. Interestingly, although the initial response
“SEAM” outperforms “CAM”, “CAM+RETAB” works better than “SEAM+RETAB” after
propagation. It shows that the usefulness of RETAB is related to the chosen initial response.

1The official train set all-mIoU of revised responses is 58.1 in PSA [1], and our reproduced result is 61.0.
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8 Evaluation on Segmentation Performance

This section supplements Section 4.3 in the main paper. Table 1 in the main paper shows the
segmentation performance on the test set. In this section, Table 10 further provides results on
the val set. By comparison, our method still outperforms baselines on all folds, especially for
novel categories, which is consistent with the performance on the test set.

             (a)                              (b)                              (c)                               (d)                                (e)                              (f )                               (g )                              (h )C n 

Fold 0
aeroplane

Fold 0
boat

Fold 0
bird

Fold 3
sofa

Fold 3
train

Fold 3
sheep

Fold 1
bus

Fold 1
cat

Fold 1
car

Fold 2
horse

Fold 2
motorbike

Fold 2
person

Figure 2: Visualized pseudo segmentation labels of novel samples on PASCAL VOC 2012
train set. (a) image. (b) GT label. (c) “CAM+RW”. (d) “CAM+RETAB”. (e) “SEAM+RW”.
(f) “SEAM+RETAB”. (g) “CPN+RW”. (h) “CPN+RETAB”. Names of novel categories
presented in the images are marked as blue on the left side.
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           (a)                          (b)                        (c)                         (d)                           (e)                         (f )                           (g )                        (h )C n 
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Figure 3: Qualitative semantic segmentation results for novel categories on PASCAL
VOC 2012 val set. (a) image. (b) GT label. (c) “CAM+RW”. (d) “CAM+RETAB”. (e)
“SEAM+RW”. (f) “SEAM+RETAB”. (g) “CPN+RW”. (h) “CPN+RETAB”. Names of novel
categories presented in the images are marked as blue on the left side.

9 Qualitative Results on Pseudo Segmentation Labels

In Figure 2, we show more visualizations of pseudo segmentation labels for novel samples
generated by different methods in fold 0, 1, 2, and 3 on PASCAL VOC 2012 train set, which
supplements Figure 3 in the main paper. In Figure 2, column (c), (e), and (g) represent the
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WSSS baseline PSA [1], SEAM [8], and CPN [10]. Column (d), (f), and (h) denote our
implemented RETAB with the same initial responses as these three baselines, respectively.
By comparing (c) with (d), comparing (e) with (f), and comparing (g) with (h), we find that
our method outperforms all baselines in recovering object shapes on the boundary regions
of pseudo labels. Boundary-aware two-stage propagation restricts the random walk process
within the target object regions and allows confident pixels to guide unconfident ones, resulting
in pseudo segmentation labels with higher quality.

10 Qualitative Results on Semantic Segmentation
We show more visualizations in Figure 3 for the segmentation results on PASCAL VOC
2012 val set predicted by different methods in fold 0, 1, 2 and 3, which supplements Figure
4 in the main paper. In Figure 3, column (c), (e), and (g) respectively displays the WSSS
baseline PSA [1], SEAM [8], and CPN [10]. It is obvious that object boundaries predicted
by these baselines are not precise. Also, some adjacent objects are wrongly classified as
inaccurate categories. Column (d), (f), and (h) in Figure 3 represent our implemented
RETAB with the same initial responses and the same segmentation network as three baselines,
respectively. For a fair comparison, we compare (c) with (d), compare (e) with (f), and
compare (g) and (h) to verify the effectiveness of our method. As illustrated, RETAB performs
considerably better than three baselines in filling object regions while not overstepping the
object boundaries. Also, our method can output more delicate details, like animal legs and
plant leaves. Consequently, we can safely claim that RETAB successfully transfers pixel-level
knowledge from base categories to novel ones and narrows the gap between weakly-supervised
and fully-supervised segmentation.

11 Generalization to Potential Novel Categories in the
Background

Recall that the basic goal of weak-shot semantic segmentation is to improve the segmentation
performance on weakly-annotated images (novel samples) with an auxiliary fully-annotated
dataset (base samples). In practical scenarios, base samples might contain potential novel
categories in some regions labeled “background”. Specifically, when labeling the fully-
annotated dataset, certain categories (base categories) are selected to annotate precisely, and
all the other pixels are marked as “background”. Actually, these background pixels may
contain novel categories we aim at. If we can discover these potential novel categories in
base samples, we might achieve better segmentation performances on novel categories for the
newly-coming weakly-annotated images.

To simulate the above situation, we propose two novel folds for PASCAL VOC 2012
dataset: fold 0∗ and fold 1∗. They follow the same category split rule as fold 0 and fold 1,
respectively. Furthermore, based on the split of base samples and novel samples in fold 0
and fold 1, we further randomly choose approximately 50% novel samples and move them to
base samples by changing their pixel labels of novel categories into the “background” label
with index 0. We refer to these new labels as revised segmentation labels. Consequently,
base samples now contain potential novel categories in the background. After this operation,
the number of base samples increases, and the number of novel samples decreases. In our
experiments, fold 0∗ contains 9184 base / 1398 novel samples, and fold 1∗ contains 8755 base
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Method fold 0∗ fold 1∗

C Cb Cn C Cb Cn

CAM+RW(seggt) 66.3 76.0 35.1 63.0 74.8 25.1
CAM+RW(affgt+seggt) 67.5 76.1 39.9 64.6 75.0 31.3
CAM+RETAB 67.8 74.4 46.5 65.3 74.4 36.3
CAM+RETAB+ST 71.9 76.2 58.0 74.5 75.8 70.3

Fully Oracle 76.6 76.8 76.1 76.6 76.2 78.1
Table 11: Comparison of segmentation performance on PASCAL VOC 2012 val set for fold 0∗

and fold 1∗. “CAM+RW(seggt)” and “CAM+RW(affgt+seggt)” are weak-shot segmentation
baselines. “CAM+RETAB” denotes our implemented RETAB. “CAM+RETAB+ST” denotes
our method followed by a self-training step. “Fully Oracle” is the fully-supervised upper
bound. All experiments use DeepLab [2] with ResNet38 [9] backbone for segmentation.

/ 1827 novel samples in the trainaug set. Next, we discuss the training strategy to deal with
this typical problem, which is also included in our weak-shot semantic segmentation task.

Based on the new split and the revised segmentation labels, the training process of our
RETAB and the segmentation network remains unchanged. Furthermore, we adopt a self-
training strategy (abbr. ST) after the segmentation step to discover potential novel categories
in the background of base samples. ST can be regarded as a self-supervised fine-tuning step
for the segmentation network with mixed supervisions from base samples and novel samples.
We introduce each iteration of ST in detail as follows, which includes three steps. First, we
use the current segmentation network to perform segmentation predictions on the current
batch of training samples. Second, for the background pixels classified as novel categories,
we flip the pixel label from “background” to the predicted novel category for each of these
pixels. Third, the revised segmentation labels are used to fine-tune the segmentation network
via back-propagation. By gradually discovering potential novel categories in the background,
the segmentation performance of novel categories could be iteratively improved. The above
procedure is repeated until a predefined number of iteration is reached. In our implementation,
we apply ST for 10000 iterations. Except that the initial learning rate is adjusted to half, all
other parameters are not changed when we fine-tune the segmentation network.

Table 11 summarizes segmentation results on the val set for fold 0∗ and fold 1∗. We
list four methods: 1) our created naive weak-shot baseline “CAM+RW(seggt)” which uses
revised labels of base samples and pseudo labels of novel samples generated by PSA [1]
for segmentation, 2) our created augmented weak-shot baseline “CAM+RW(affgt+seggt)”
which is based on the naive baseline and further uses ground-truth affinity labels of base
samples for affinity training, 3) our method “CAM+RETAB” which uses revised labels of
base samples and pseudo labels of novel samples generated by our RETAB for segmentation,
and 4) our method with self-training “CAM+RETAB+ST”. As shown in Table 11, our method
consistently outperforms all the baselines on novel categories. After adopting the self-training
strategy, more potential novel categories in the base samples are discovered. As a result, the
segmentation network witnesses a huge improvement on novel categories. In conclusion, our
RETAB could generalize to discover potential cues of novel categories in the background of
base samples with a simple follow-up self-training step.
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class bg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fold 4 b n n n n n n n n n n b b b b b b b b b b
fold 5 b n n n n n n n n n n n n n n n b b b b b

Table 12: The category splits of fold 4 and fold 5 for PASCAL VOC 2012 dateset. In each
fold, ‘b’ denotes a base category and ‘n’ denotes a novel category. bg represents for the
background category.

Method fold 4 fold 5
C Cb Cn C Cb Cn

CAM+RW [1] 61.7 62.8 60.5 61.7 60.6 62.1
CAM+RW(seggt) 67.7 72.6 62.4 64.2 67.8 62.8
CAM+RW(affgt+seggt) 70.6 74.8 66.9 66.7 70.9 65.0
CAM+RETAB 74.3 75.6 72.8 69.3 71.5 68.4

Fully Oracle 76.6 76.2 77.1 76.6 72.6 78.2
Table 13: Comparison of segmentation performance on fold 4 and fold 5 of PASCAL VOC
2012 val set. “CAM+RW” represents our WSSS baseline PSA. “CAM+RW(seggt)” and
“CAM+RW(affgt+seggt)” are weak-shot segmentation baselines. “CAM+RETAB” denotes
our implemented RETAB. “Fully Oracle” is the fully-supervised upper bound. All experiments
use DeepLab [2] with ResNet38 [9] backbone for segmentation.

12 Generalization to Fewer Fully-annotated Training
Data

To prove that RETAB can use a small proportion of base samples to facilitate a large number
of novel samples, we create fold 4 and fold 5 to include more novel categories and fewer
base categories. As shown in Table 12, there are 10 novel categories in fold 4 and 15 novel
categories in fold 5. Fold 4 contains 4443 base / 6139 novel samples, and fold 5 contains 1014
base / 9568 novel samples in the trainaug set. Following the evaluation setting in Section
4.3 in the main paper, we compare our method “CAM+RETAB” with the WSSS baseline
“CAM+RW” and our created weak-shot segmentation baselines: “CAM+RW(seggt)” and
“CAM+RW(affgt+seggt)”. The segmentation results on the val set are listed in Table 13. Our
method surpasses all baseline methods, especially on novel categories. Also, it can recover a
considerable proportion of the fully-supervised upper bound. These evaluation results prove
that our proposed RETAB can generalize well even if weakly-annotated novel samples are
much more than fully-annotated base samples.

13 Limitations and Future Works

In Figure 4, we list some failure cases of segmentation results of our method on the val
set. Although RETAB successfully narrows the gap between weakly-supervised and fully-
supervised segmentation, it could also probably make unsatisfying predictions on some hard
novel categories, like “bottle” in fold 0 and “person” in fold 2. “bottle” objects tend to have
paster on the body, which could easily be treated as part of the boundaries, thus misleading
the propagation to undesirable results. “person” objects take up a considerable proportion
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          Image                  GT label                   Ours                        Image                   GT label                   OursC n 

Fold 0
bottle

Fold 1
bus
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person
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tvmonitor

C n 

Figure 4: Failure cases of semantic segmentation results on VOC12 val set. Names of novel
categories presented in the images are marked as blue on both sides of the figure.

in the dataset. This category has spatial relationships with many other categories, making
“person” hard to segment when it is split into the set of novel categories.

In this work, we focus on the second step under the typical WSSS framework to improve
the response expansion algorithm. However, the first step, i.e., the way to obtain the initial
response, is also crucial. The quality of the initial response directly affects the performance of
downstream operations. In the future, we will focus on how to transfer pixel-level knowledge
from base categories to novel categories to improve the performance of the initial response for
novel samples. Since our proposed RETAB can work on any initial response, the improved
initial response could also use RETAB as the second step for response expansion. We hope
that RETAB can function as a simple yet effective baseline to facilitate future researches on
weak-shot semantic segmentation.
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