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Abstract

Despite the recent developments in 3D Face Reconstruction from occluded and noisy
face images, the performance is still unsatisfactory. Moreover, most existing methods
rely on additional dependencies, posing numerous constraints over the training pro-
cedure. Therefore, we propose a Self-Supervised RObustifying GUidancE (ROGUE)
framework to obtain robustness against occlusions and noise in the face images. The
proposed network contains 1) the Guidance Pipeline to obtain the 3D face coefficients
for the clean faces and 2) the Robustification Pipeline to acquire the consistency be-
tween the estimated coefficients for occluded or noisy images and the clean counter-
part. The proposed image- and feature-level loss functions aid the ROGUE learning
process without posing additional dependencies. To facilitate model evaluation, we pro-
pose two challenging occlusion face datasets, ReaChOcc and SynChOcc, containing
real-world and synthetic occlusion-based face images for robustness evaluation. Also,
a noisy variant of the test dataset of CelebA is produced for evaluation. Our method
outperforms the current state-of-the-art method by large margins (e.g., for the perceptual
errors, a reduction of 23.8% for real-world occlusions, 26.4% for synthetic occlusions,
and 22.7% for noisy images), demonstrating the effectiveness of the proposed approach.
The occlusion datasets and the corresponding evaluation code are released publicly at
https://github.com/ArcTrinity9/Datasets-ReaChOcc-and-SynChOcc.
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1 Introduction
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Figure 1: An overview of the proposed Self-Supervised RObustifying GUidancE (ROGUE)
framework. ROGUE addresses the occlusion and noise problems in face images for 3D face
reconstruction by the proposed novel image- and feature-level consistency loss functions in
the self-supervised fashion, enforcing occluded and noise coefficients to be consistent with
the target coefficients of the guiding image, without the requirement of 3D ground-truth face
scans and any additional dependency for the training.

3D face reconstruction from monocular face images has been a longstanding problem
in the field of 3D computer graphics and computer vision. Recent deep-learning-based ap-
proaches demonstrate encouraging progress with regard to perceptual accuracy and training
efficiency, facilitating numerous applications such as face recognition [1, 3, 22, 33], face
artifice and animation [6, 15, 35]. To address the mathematically ill-posed issue, the fitting-
based method, 3D Morphable Model (3DMM) [2], proposes a low-dimensional 3DMM
search space spanning the range of human facial appearance. The coordinates from the
two sub-spaces, geometry and texture, along with the illumination and pose parameters, gen-
erate a 3D face such that the corresponding face image (projection of 3D face) resembles the
target image. However, most target images contain occlusions such as glasses and masks.
Moreover, face images are usually not noise-free. Therefore, the fitting-based methods may
drift the coordinates outside the 3DMM space or distort the 3D face geometry and texture,
posing challenges to the problem of 3D face reconstruction from monocular images.
To address the above issues, several approaches have been proposed. Fitting-based optimiza-
tion approaches [9] iteratively adapt the segmentation map to the target face image. 3D faces
can also be obtained from occluded face images using training methodologies with different
supervisions [7, 13, 28, 31, 36]. In addition, depth-based methods [18, 37] tackle noise is-
sues for 3D face reconstruction with depth maps. However, the above methods hold several
dependencies, such as skin masks, depth maps, ground-truth data, synthetic data, segmented
maps, multi-images, etc., posing numerous constraints over the training procedure. There-
fore, a novel training pipeline that can avoid the above-stated requisites and attain robustness
against facial occlusions and image noise is desired. Moreover, there is a need for dedicated
occlusion datasets to facilitate the performance evaluation of such models.
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In this work, we propose two natural occlusion-based test datasets: Real World Challenging
Occlusion (ReaChOcc), and Synthetic Challenging Occlusion (SynChOcc) datasets to fa-
cilitate robust face reconstruction research, which is not well-explored in the community.
Also, we propose a novel Self-Supervised RObustifying GUidancE (ROGUE) framework,
which learns statistical facial coefficients for occluded, and noisy face images simultane-
ously in a self-supervised manner, without requiring ground truth 3D face scans. The pro-
posed ROGUE contains two parts: 1) The Guidance Pipeline estimates coefficients for the
clean target face using self-supervised cycle-consistent manners, and 2) the Robustifica-
tion Pipeline enforces the estimated coefficients of occluded and noisy faces to be consis-
tent with clean images. The training is done without additional dependencies due to our
image and feature-level losses. The proposed ROGUE framework is evaluated on three
datasets: ReaChOcc, SynChOcc, noise variant of the CelebA [20] dataset, and outperforms
the current state-of-the-art methods by large margins. For example, for the perceptual error,
ROGUE achieves a reduction of 23.8% (1.237→ 0.943) for real-world occlusions, 26.4%
(1.195→ 0.879) for synthetic occlusions, and 22.7% (1.245→ 0.963) for noisy images.
In summary, the contributions of our work are as follows:

1. ReaChOcc and SynChOcc Testing Datasets: To facilitate robust face reconstruction re-
search, we propose ReaChOcc and SynChOcc datasets containing natural real-world and
synthetic facial occlusions. Our datasets facilitate both shape and texture comparisons.
We have publicly released the datasets and the corresponding evaluation code.

2. Self-Supervised Robustifying Guidance Framework: We propose a self-supervised
framework with novel image- and feature-level robustification losses, dubbed ROGUE, to
obtain accurate 3D faces by attaining robustness against the challenging facial occlusions
and noise in the facial images (e.g., 25+% perceptual error reduction), without posing
dependencies and the requirement of 3D ground truth.

2 Related Work
Robustness for Face Reconstruction: Egger et al. [9] aim to address the occlusion issues
by segmenting the target image into face and non-face regions and iteratively adapting the
face model and the segmentation to the target image. Tran et al. [31] deploy an example-
based hole filling approach by utilizing the reference set of images containing a suitably
similar individual as in the target image. Genova et al. [13] exploit synthetic ground truth
data (with the label-free instances of real target image) to tackle the occlusions. Yuan et
al. [36] exploit 3DMM to tackle the occlusions in 2D images, where the 3D ground truth
data obtained by 3DDFA [38] is required. However, the above methods either only well
tackle small-scale occlusions (e.g., minor beards, goggles) instead of large-scale ones (e.g.,
face masks, tattoos) [7, 9] or rely upon additional dependencies, such as additional images,
synthetic data, 3D ground truth, etc. [7, 13, 31, 36]. Besides, our method focuses on tackling
large-scale occlusions without posing additional dependencies. Moreover, the noise in the
face images poses a challenge in obtaining accurate 3D faces. To our knowledge, there are
no 3D face reconstruction methods [4, 7, 8, 9, 12, 13, 19, 27, 29, 30, 31, 32] aiming to
reconstruct the 3D faces from the heavily noisy face images. However, there are depth-
based methods [18, 37] aiming to address the issues of device-specific noise in obtaining
the depth map for reconstructing 3D faces, but tackling the noises in the face images is
beyond the scope of those papers. In this paper, the proposed Self-Supervised Robustifying
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Figure 2: The overall training pipeline of the proposed Self-Supervised RObustifying
GUidancE (ROGUE) framework. The Guidance Pipeline ensures the faithful reconstruc-
tion of the 3D faces from clean guiding images IG in a cycle-consistent manner, and the
Robustification Pipeline enforces the estimated coefficients of occluded and noisy images
(CO, CN) to be consistent with guiding ones (CG). The training is done in a self-supervised
fashion by the proposed self-supervised image-level losses (LO, LN) and feature-level ad-
versarial consistency loss (LC), without the need for 3D ground truth. Here the solid lines
represent the data flow, whereas the dotted lines indicate gradient flow.

Guidance framework aims to attain robustness against the image noise and facial occlusions,
thus facilitating the accurate reconstruction of 3D faces from noisy and occluded images.
Occlusion-Aware Datasets: Existing real-world and synthetically occluded test datasets [17,
21, 24, 34] have the following shortcomings: lack of non-occluded ground-truth face im-
ages, restrictions on open access, and the limited number of facial occlusions. RealOcc-
Wild dataset [34] contains 270 faces with various natural occlusions. The real-world dataset
in [17] consists of challenging occlusions (e.g., sunglasses, food, hats, and hands). [21] con-
tains hand-occluded face images. NoW dataset [24] consists of 528 images with common
occlusions. However, these datasets do not contain textured 2D/3D ground-truth data, and
some occlusions such as bangs, beards, mustaches, turbans, and masks are absent. In addi-
tion, the unavailability of test datasets [24] in the open public domain poses constraints over
the testing. Besides, our publicly released datasets are designed explicitly for reconstruction
tasks and contain various occluded images and the corresponding non-occluded faces.

3 Self-Supervised RObustifying GUidancE (ROGUE)
Despite the encouraging results obtained by the previous methods for 3D face reconstruc-
tion from occluded face images, there is still a large room for improvement with regards
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to moderately to heavily occluded face images. In addition, tackling image noise is still an
under-addressed issue. Moreover, these methods require several dependencies such as syn-
thetic data, skin masks, etc., posing constraints for training (see Sec. 2 for more details).
Therefore, we aim to learn 3D faces in a self-supervised manner without requiring ground
truth 3D face scans and other dependencies. To achieve this goal, we propose the Self-
Supervised RObustifying GUidancE (ROGUE) framework, which is composed of: 1) the
Guidance Pipeline and 2) the Robustification Pipeline (Fig. 2). For the preliminaries of
monocular 3D face reconstruction, please refer to the Supplementary.
Guidance Pipeline: In occlusion robust monocular 3D face reconstruction, one of the
main goals is learning reliable 3DMM coefficients with the least supervision and dependen-
cies. Inspired by R-Net [7] which contains comparatively fewer dependencies, we propose
the Self-Supervised Guidance Pipeline to learn the coefficients CG by exploiting the cycle-
consistency in a self-supervised manner, as shown in Fig. 2 (upper). More specifically, the
Guidance Pipeline takes a clean (i.e., non-occluded noise-free) image IG (named guiding
image) as the input, renders the 3D mesh MG, and projects back to get the 2D face image IG′ .
And then CG is learned by enforcing the consistency between IG and IG′ , using only a single
monocular face image. Moreover, CG guides the Robustification Pipeline to attain robustness
against the face occlusions and noise in the images without relying upon external guidance
such as skin masks [7], synthetic data [13], etc. For more details on various components of
the Guidance Pipeline please refer to the Supplementary.
Robustification Pipeline: Although the Guidance Pipeline reduces the requirement of su-
pervision and dependencies, the two significant issues for monocular 3D face reconstruction
are still not fully addressed: occlusion and noise. First of all, current methods still cannot
reasonably handle the face images with the majority of facial regions occluded, where these
methods drift away from their searches from the 3DMM space, resulting in the reconstruc-
tion of non-human-like 3D faces. Moreover, additional dependencies such as pre-trained
face segmentation models [19], skin masks [7], etc., used by existing methods for tackling
the occlusion issues constrain the efficiency of training. Furthermore, despite the progress in
the 3D face reconstruction field, no approach has been proposed to tackle the issue of noise
in the face image. All the above challenges motivate the need to learn 3D facial coefficients
from occluded and noisy face images more accurately and efficiently. Therefore, we propose
the Self-Supervised Robustification Pipeline to attain robustness against the occlusions and
noise in the face images with the least additional dependencies, as shown in Fig. 2 (lower).
More specifically, we exploit the guiding image IG and the estimated coefficients CG from
Guidance Pipeline, and encourage the geometry and texture consistency between the Ro-
bustification Pipeline and the Guidance Pipeline, to make CG consistent with the estimated
coefficients CO (from occluded face images IO) and CN (from noisy face images IN). All the
components of the Robustification Pipeline are presented as follows:
1) To obtain consistency with the Guidance Pipeline for the Robustification (occlusion
and noise) coefficients, we exploit a three-layer Generative Adversarial Network (GAN) ar-
chitecture and propose the Adversarial Consistency Loss LC as follows:

LC = LCO +LCN ,LCO = Lh(D(CG,CO), [dG,dO]),LCN = Lh(D(CG,CN), [dG,dN ]), (1)

where LCO represents the occlusion-robustification consistency loss for tackling the occlu-
sion issues and LCN denotes noise-robustification consistency loss for tackling the noise
in the face image. In the equation, D is the classifier to discriminate CG and Ci ∈ R257

(i=O/N), andLh denotes the standard Huber loss function. In addition, di ∈R (i=G/O/N)
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represents the labels associated with the (guiding/occlusion/noise) coefficients.
2) To ensure the guidance direction such that the Robustification Pipeline learns through
the experience of the Guidance Pipeline and not vice-versa, we directly regress the pixels of
the projected 3D face obtained from the occluded face images (IO′ ) and noisy face images
(IN′ ) over the guidance counterpart (IG) by the proposed Occlusion-Resistive Photometric
Loss LO and Noise-Resistive Photometric Loss LN , respectively, as follows:

LO = ||IO′ − IG||, LN = ||IN′ − IG||. (2)

The overall loss function Lrobust for the proposed method can be expressed below:

Lrobust = βOLO +βNLN−βCLC, (3)

where βO,βN and βC are the weights associated with occlusion and noise-resistive photo-
metric losses (Eq. (2)), and adversarial consistency loss (Eq. (1)), respectively. The negative
sign indicates the adversarial training. For simplicity, the notation of the image index is
ignored here. It is worth noting that the proposed Self-Supervised Robustifying Guidance
framework leverages the novel robustification loss function Lrobust . Thus our approach bears
a significant difference from R-Net [7] regarding the model, architecture, losses, and target
data. Unlike R-Net, our model does not require skin masks for the training, facilitating train-
ing efficiency. Moreover, our proposed framework is the first (to the best of our knowledge)
to tackle the noise in the face images for 3D face reconstruction without 3D ground truth.

4 Dataset Preparation
To obtain the training data, we exploit the training set of several standard face datasets as
the clean guiding images and create synthetic occluded and noisy face images for our train-
ing pipeline. For testing, numerous real-world and synthetically occluded test datasets [17,
21, 24, 34] have been proposed. However, these datasets have shortcomings such as the
unavailability of the dataset in the public domain, lack of non-occluded ground-truth face
images, and a limited number of facial occlusions. RealOcc-Wild dataset [34] contains 270
faces with various natural occlusions. The real-world dataset in [17] consists of challeng-
ing occlusions (e.g., sunglasses, food, hats, and hands). [21] contains hand-occluded face
images. For 3D face reconstruction, there is only one occlusion-based dataset, NoW test
set [24], which is not publicly available and thus poses constraints on the testing. Moreover,
the datasets mentioned above do not contain several types of facial occlusions such as bangs,
beards, mustaches, turbans, and masks. Therefore, a dataset is required which contains
numerous possible occlusions and the corresponding non-occluded facial data and should
facilitate open research. For achieving the objectives, we propose two datasets: 1) Rea-
ChOcc contains real-world challenging facial occlusions such as beards, food items, hands,
sunglasses, and 2) SynChOcc consists of tough natural occlusions such as mustaches, spec-
tacles. Furthermore, to validate the efficacy of our model against noisy cases, we construct
a 3) Noisy variant of CelebA-test dataset [20]. Please refer to the Supplementary for more
details about the training and testing datasets.
ReaChOcc Dataset: To facilitate occlusion robust 3D face reconstruction model evalua-
tion on challenging real-world data, we introduce a new testing set Real-World Challenging
Occlusion (ReaChOcc) consisting of 550 face images gathered from various open sources.
In our dataset, we have 11 images of each subject in the set of 50 subjects such that 10 im-
ages of a subject are occluded, and 1 image is clean. The occluded and clean facial images
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are unpaired (captured under different image acquisition environments). These images cover
a range of tough facial occlusions, e.g., beards, hands, masks, sunglasses, mustaches, and
foods (e.g., Fig. 3 (a)). Moreover, we provide 5 facial landmark coordinates to facilitate
cropping and alignment, if needed. However, due to occlusions, 331 occluded face images
failed to be detected by dlib [16] to produce landmark coordinates. Therefore, we manually
labeled the landmark coordinates of these facial images.
SynChOcc Dataset: We also introduce a novel synthetic occlusion-based test set, Synthetic
Challenging Occlusion (SynChOcc) dataset, to evaluate the performance of occlusion ro-
bust 3D face networks. The dataset contains 550 face images of 50 subjects such that each
subject has 10 occluded facial images and 1 non-occluded face. The occluded are generated
by overlaying natural occlusions (e.g., turbans, face masks, eye masks, hats, and bangs) on
the clean facial images (e.g., Fig. 3 (b)); thus, we have paired data in the proposed dataset.
Also, we provide 5 facial landmark coordinates to facilitate cropping and alignment of the
face images. These facial landmark coordinates are derived using dlib [16].

Clean Image

b)

Occluded Images  Clean Image Occluded Images

a)

Figure 3: A demonstration of the samples from the proposed a) ReaChOcc, and b) Syn-
ChOcc datasets. Our ReaChOcc contains unpaired clean images, whereas SynChOcc pro-
vides paired clean images for comparison.

5 Experiments
In this work, unlike several recent approaches [10, 39], we aim to recover 3D face shape
and texture simultaneously from occluded and noisy monocular face images without posing
additional requirements. To achieve this goal, we propose two datasets designed for this
problem (Sec. 4) since there is no publicly available one. For more dataset and implementa-
tion details, please refer to the Supplementary.

5.1 Evaluation Metrics
To evaluate the model performance, we use a standard evaluation metric: perceptual error
metric, which aims at deriving the mean Euclidean L2 Distance between the feature vectors
obtained from various face recognition models. The primary focus of the error metric is on
obtaining the visual discrepancy between rendered 3D face and the corresponding 2D face
image. We exploit a total of 2 high-performing face recognition models in the main paper:
FaceNet-512 [25], and ArcFace [5]. We detail an algorithm to outline the perceptual error
metric-based evaluation procedure on the proposed ReaChOcc and SynChOcc datasets in
Algo. 1. Moreover, we evaluate our approach on the standard NoW [24] validation dataset
to validate its effectiveness. We also present the perceptual error results from 5 other pop-
ular backbones, the details on the performance of our model on the MICC dataset in the
Supplementary.
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Algorithm 1 Evaluation on ReaChOcc and SynChOcc Datasets
Require: Real-World Occluded Face Dataset: ΨR ∈ R50×10, Synthetically Occluded Face Dataset: ΨS ∈ R50×10,

Clean Face Dataset: ϒ ∈ R10, Projection Function: ζ , Perceptual Network: υ , ROGUE: λ

Ensure: Perceptual Dissimilarities: LR, LS
while i≤ 50 do

IG← ϒ[i];
while j ≤ 10 do

IOR ←ΨR[i][ j];
IOS ←ΨS[i][ j];
CGS ,CGT ,CGE ,CGI ,CGP ← λ (IG);
COR

S
,COR

T
,COR

E
,COR

I
,COR

P
← λ (IR

O);

COS
S
,COS

T
,COS

E
,COS

I
,COS

P
← λ (IS

O);
Update COR

E
←CGE , COR

I
←CGI , COR

P
←CGP ;

IOR′ ← ζ (COR
S
,COR

T
,COR

E
,COR

I
,COR

P
, IG);

IOS′ ← ζ (COS
S
,COS

T
,COS

E
,COS

I
,COS

P
, IG);

LR← υ(IG, IOR′ );
LS← υ(IG, IOS′ );
j← j+1

end while
i← i+1

end while

5.2 Experimental Results

Qualitative Evaluation: We show the qualitative efficacy of our method on: 1) the Rea-
ChOcc set, 2) the SynChOcc set, and 3) the noisy face set. For this purpose, we compare our
results with the several latest state-of-the-art methods. 3DMM [23], Flow [14], 3DDFA [38],
Sela et al. [26], Tran et al. [31], and MICA [39] are the occlusion robust 3D face shape re-
construction methods. MoFA [28], R-Net [7], and DECA [11] proposed to reconstruct 3D
face shape and texture simultaneously from occluded monocular face images. Motivated by
this, we break our comparisons into two categories: 1) comparison with shape recovery-
focused methods (Fig. 4), and 2) comparison with texture (along with shape) recovery-based
methods (Fig. 5). In Fig. 4, our method demonstrates better shape recovery from occluded
images than most SOTA methods. These approaches focus on recovering shape, whereas
texture estimation is beyond the scope of these methods. Moreover, Fig. 5 shows that our
reconstructed 3D faces are visually closer to clean images compared to DECA, R-Net, and
MoFA. Note that DECA aims at wrapping the input images to the recovered 3D face shapes
by estimating the UV texture maps, thus reproducing occlusions on the 3D faces. Besides,
unlike SOTA approaches, our method simultaneously focuses on recovering occlusion ro-
bust shape and texture to improve the visual similarity with the non-occluded facial images.
Quantitative Analysis: The state-of-the-art methods [14, 23, 26, 31, 38, 39] focus on recon-
structing occlusion-aware 3D face shapes, whereas the issue of robust texture recovery is not
addressed by these methods. Therefore, these methods fail to perform well on the perceptual
error metric. As a result, we compare our method with MoFA, R-Net, and DECA, which
reconstruct both 3D face shape and texture. Our quantitative results (Table 1) show better
perceptual similarity for the reconstructed 3D face than these approaches. The proposed
method reduces the perceptual error by a large margin of 23.8% (from 1.237 to 0.943) com-
pared to MoFA on ReaChOcc. In addition, our approach reduces 9.8% (from 1.045 to 0.943)
and 14.1% (from 1.097 to 0.943) the perceptual errors for R-Net and DECA, respectively.
On the SynChOcc dataset, our proposed method shows a large reduction of 26.4% (from
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Occluded 
Images

ROGUE  
(Ours)

ROGUE  
(Ours) 

w/o color 

3DMM 
(CVPR'05) 

Flow 
(ICCV'13) 

3DDFA 
(CVPR'16) 

Sela et al. 
(ICCV'17) 

Tran et al. 
(CVPR'18) 

MICA  
(ECCV'22) 

Figure 4: A qualitative comparison of our method with various methods for the case of
real-world occlusions. Our results show improved reconstructed 3D faces.

Clean  
Images

Occluded/Noisy 
Images

ROGUE  
(Ours) 

R-Net 
(CVPRW'19) 

MoFA 
(TPAMI'18) 

DECA 

(TOG'21) 

Real-World 
 Occlusions

Synthetic  
Occlusions

Noise

Figure 5: A qualitative comparison of our method with DECA, R-Net and MoFA on the
ReaChOcc, SynChOcc and noisy datasets. Our results show a significant improvement in the
reconstructed 3D faces. Note that DECA’s meshes are cropped for clear comparison.

1.195 to 0.879) compared to MoFA. In addition, the proposed approach reduces 8.0% (from
0.955 to 0.879) and 7.6% (from 0.951 to 0.879) the perceptual errors with regard to R-Net
and DECA, respectively. Finally, for the noisy variant, our method reduces the perceptual
errors by a large margin of 22.7% (from 1.245 to 0.963) compared to MoFA. Moreover, our
approach reduce 17.1% (from 1.161 to 0.963) and 17.5% (from 1.167 to 0.963) of the per-
ceptual errors compared to R-Net and DECA, respectively. All these results demonstrate the
efficacy of the proposed approach. It is worth noting that DECA estimates occlusion robust
3D face shape, whereas robust texture estimation is beyond its scope; thus, perceptual error
evaluation for DECA (Table 1) is performed only to emphasize the necessity of occlusion
robust 3D texture reconstruction. We also evaluate our model on the standard NoW [24]
validation set. NoW derives the scan-to-mesh distance between the ground truth scan and
the predicted meshes. It is worth noting that our approach focuses on producing robust tex-
ture and shape simultaneously, but the performance on the shape-specific (i.e., not evaluate
texture accuracy) NoW dataset (Table 2) is still comparable to SOTA methods like DECA.
More Discussions: Due to the page limit, please refer to the Supplementary for 1) the details
on the testing and training datasets, 2) implementation details, 3) more comparisons with
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ReaChOcc SynChOcc Noise

Methods FaceNet-512 ArcFace FaceNet-512 ArcFace FaceNet-512 ArcFace

MoFA (TPAMI’ 18) 1.237±0.141 1.313±0.114 1.195±0.126 1.284±0.150 1.245±0.171 1.250±0.274
R-Net (CVPRW’ 19) 1.045±0.173 1.188±0.171 0.955±0.187 1.131±0.194 1.161±0.253 1.221±0.217

DECA (TOG’ 21) 1.097±0.176 1.196±0.176 0.951±0.184 1.061±0.210 1.167±0.295 1.170±0.298

ROGUE (Ours) 0.943±0.187 1.025±0.168 0.879±0.174 0.983±0.186 0.963±0.185 1.017±0.146

Table 1: A quantitative comparison of the perceptual distance using the mean euclidean
L2 distance metric with other approaches on the proposed ReaChOcc, SynChOcc and
noisy datasets, where the error numbers are the lower, the better.

NoW Evaluation (Non-Metrical)

Methods median mean std

MoFA (TPAMI’ 18) 1.547 2.228 2.567
R-Net (CVPRW’ 19) 1.505 2.133 2.485

ROGUE (Ours) 1.408 1.978 2.221
DECA (TOG’ 21) 1.308 1.635 1.407

Table 2: (Left) A quantitative evaluation on the NoW validation dataset. (Right) In the plot,
the x-axis shows the scan-to-mesh distance error (in mm), whereas the y-axis displays the
cumulative percentage such that the higher the curve, the better the shape-based accuracy. It
is worth noting that the expressions are not set to be neutral during evaluation.

other methods, 4) ablation studies for the cases of occlusions and noisy images, and 5) the
discussions of potential negative societal impact and limitations.

6 Conclusions and Future Work

In this work, we presented two occluded face datasets, ReaChOcc and SynChOcc, contain-
ing various challenging real-world and synthetic occlusion-based face images for robustness
tests. Moreover, we proposed a novel Self-Supervised RObustifying GUidancE (ROGUE)
framework to address the problem of occlusions and noise in the face image for monocu-
lar 3D face reconstruction in a self-supervised manner. More specifically, we trained the
Guidance Pipeline to guide the Robustification Pipeline to see through occlusions (e.g., ir-
respective of the occlusion colors, shapes, and spatial locations) and noise in the face image.
Our experiments showed that our model outperforms the current state-of-the-art methods
by large margins (e.g., a reduction of 23.8% for real-world occlusions, 26.4% for synthetic
occlusions, and 22.7% for the noise in the face images). For future work, we aim at even
fewer training dependencies. For example, we plan to waive the requirement of the Guid-
ance Pipeline by empowering the Robustification Pipeline to self-estimate the probable non-
occluded 3D faces that enable the model to gain robustness against the occlusions.
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