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Monocular 3D Face Reconstruction

Generate 3D faces from monocular face images

Goal . : \
without using 3D ground truth face scans }
.
Challenges How toinfluence the output? Parameters? -

Applications Face artifice, animation, etc.

Robust 3D Face Reconstruction

Generate 3D faces from occluded
and noisy monocular face images
How to attain robustness in a
self-supervised manner?

Goal

Challenges

Applications Face recognition, animation, etc.

Occlusion Robust Methods Noise Robust Methods

» input+ weak label — output » under-addressed issue

Evaluation Dataset

Texture + shape evaluation
» Texture evaluation

Challenges > Open access
» Occlusion dedicated dataset

Goal

Guidance Losses
Lk = ||Lg —Lgl|

Lep=|Ig—=1g|

Our Self-Supervised RObustifying GUidancE (ROGUE) framework
learns statistical facial coefficients for occluded, and noisy face
images in a self-supervised manner using following pipelines

Estimates coefficients for the clean target
face

Enforces the estimated coefficients of
occluded and noisy faces to be consistent
with clean images

Guidance Pipeline

Robustification Pipeline
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Robustification Losses

Lco = Lp(D(Cg. Co). [dg. do]).
Len = La(D(Cq, Cn), [da, dn]).
Le=Lco+ Lep.

e (0.0

ool
Lr = wells|] + wellt]] + wellel] Lo =Illor =Igll.  Ln=lIv —Iall
Lguide = ALk + agpLgp + apLp + ag Ly Lrobust = PoLo+ PnEn—PcLe

Proposed Evaluation Datase
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— MoFA
— R-Net
—— ROGUE
—— DECA

Error [mm]

ReaChOcc SynChOcc Noise
Methods FaceNet-512 ArcFace FaceNet-512 ArcFace FaceNet-512 ArcFace
MoFA (TPAMY’ 18) 1.2374+0.141 1.313+0.114 1.195+0.126 1.284+0.150 1.245+0.171 1.250+0.274
R-Net (CVPRW’ 19) 1.0454+0.173 1.188+0.171 0.9554+0.187 1.1314+0.194 1.161+0.253 1.221+0.217
DECA (TOG’ 21) 1.0974+0.176  1.196+0.176 0.951+0.184 1.0614+0.210 1.167+0.295 1.170+0.298
ROGUE (Ours) 0.943+0.187 1.025+0.168 0.879+0.174 0.983-+0.186 0.963+0.185 1.017+0.146
Shape Comparison
Occluded ROGUE R((())GE)E MICA Tran et al. Sela et al. 3DDFA Flow 3DMM
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Shape & Texture Comparison

Clean Occluded/Noisy ROGUE DECA
Images Images (Ours) (TOG"21)
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