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In the supplementary material, we would like to provide more technical details, experi-
ments, and discussions about the limitations and societal impact.

1 More Technical Details
In this section, we detail the preliminaries of the proposed method (refer to Section 1.1).
Further, in Section 1.2, we present the robustifying guidance using Guidance Pipeline, which
aids the Robustification Pipeline in addressing the issue of occlusions and noise in the face
images in a self-supervised manner.

1.1 Preliminaries: Monocular 3D Face Reconstruction

In this section, the preliminaries of the proposed approach are introduced, such as 3DMM [3],
illumination assumptions, and 3D face projection, which are crucial to address the problem
of 3D reconstruction from monocular face images.
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3D Morphable Model (3DMM): In 3DMM, a set of geometry and texture coefficients lead
to the formation of a 3D face. Thus the formulas of geometry vector M and texture vector T
for the 3DMM model are stated as follows:

M = M+ sBs + eBe, T = T+ tBt. (1)

A linear combination of Bs ∈R3N×80 and Be ∈R3N×64 (subsets of Principal Component
Analysis basis for shape and expression) with the predicted shape parameter s = [s1, · · ·s80]
and expression parameter e = [e1, · · ·e64] respectively morphs the mean 3D face geometry
M ∈ R3N (refer to Eq. 1). Similarly, texture morphing is facilitated by adding the mean
texture T ∈ R3N to the linear combination of texture basis vector Bt ∈ R3N×80 and predicted
texture parameter t = [t1, · · · t80]. The vectors Bt, T, Bs, and M are obtained from the Basel
Face Model [17] whereas we acquire Be from the Facewarehouse model [4], following [13].
Note that we, as in [9], preclude the ear and neck regions; thus our mesh contains N = 36K
vertices.

The 3D face illumination is represented using Spherical Harmonics by assuming a Lam-
bertian surface reflectance [9]. To obtain the face image, the 3D face coordinates are mapped
to the screen by assuming a pinhole camera under full perspective projection, as in [9]. We
represent the 3D face illumination using Spherical Harmonics by assuming a Lambertian
surface reflectance.

1.2 Guidance Pipeline
One of the main goals is learning reliable 3DMM coefficients with the least supervision
and dependencies. Inspired by R-Net [9] which contains comparatively fewer dependencies,
we propose the Self-Supervised Guidance Pipeline to learn the coefficients CG by exploit-
ing the cycle-consistency in a self-supervised manner (see main paper for details). All the
components of the Guidance Pipeline are presented as follows:
Obtaining 3D Face Alignment: The first consistency we aim to maintain is the face align-
ment between the guiding image IG and the reconstructed image IG′ , which is achieved by
reducing the discrepancy between landmark coordinates of the faces. We represent the dis-
crepancy using the Landmark Loss LK as follows: Following R-Net, we obtain the alignment
between the 2D non-occluded noise-free face image and the corresponding 3D face projec-
tion by reducing the discrepancies between the 68 landmark coordinates of the faces.

LK = ||LG−LG′ ||. (2)

where LG and LG′ denote a set of 68 landmark coordinates of 2D face image and the rendered
counterpart, respectively, and ||.|| represents the L2 norm.
Obtaining Photometric Consistency: To reach the goal of fewer dependencies, we directly
regress the pixels of the rendered 3D face (IG′ ) over the corresponding guiding face image
(IG) and obtain the pixel-wise consistency between them by the Guiding Photometric Loss
LGP as follows:

LGP = ||IG− IG′ ||. (3)

It is worth noting that unlike R-Net [9], we relax the requirement of skin masks as additional
dependencies.
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Obtaining Perceptual Loss: In addition to image-level information, reducing the feature-
level discrepancy is critical to obtaining the perceptual accuracy of 3D faces. Thus, we adopt
the Perceptual Loss LP as follows:

LP = 1− 〈θ ,θ ′〉
||θ ||||θ ′||

. (4)

where θ and θ ′ are the feature representations obtained from the pre-trained FaceNet model [20]
for target image IG and the corresponding rendered face IG′ , respectively.
Regularization: To ensure the plausible face geometry and texture of the reconstructed 3D
face, we adopt the Regularization term LR, which enforces the coefficients to follow the
(normal) distribution of 3DMM, as follows:

LR = ws||s||+wt ||t||+we||e||, (5)

where ws,wt and we are the weights associated with shape s, texture t, and expression s
coefficients, respectively.
Overall Loss for Guidance Pipeline: The overall loss functionLguide for the Self-Supervised
Guidance Pipeline can be expressed below:

Lguide = αKLK +αGPLGP +αPLP +αRLR. (6)

where αK ,αGP,αP, and αR are the weights for landmark loss (Eq. (2)), guiding photometric
loss (Eq. (3)), perceptual loss (Eq. (4)) and regularization term (Eq. (5)), respectively. For
simplicity, the notation of the image index is ignored throughout the whole paper.

2 More Experimental Details

In this section, we detail the datasets and the corresponding variations deployed for train-
ing the proposed Self-Supervised RObustifying GUidancE (ROGUE) framework (refer to
Sec. 2.1). In addition, we present the experimental details, such as network architecture,
weights for the losses, etc., in Sec. 2.2. Finally, more ablation studies and experiments are
shown in Sec. 2.4 and 2.3, respectively.

2.1 Datasets

Procuring 3D ground-truth data is difficult due to privacy concerns and monetary issues.
To validate the robustness against occlusions and noise, we exploit the proposed 1) Rea-
ChOcc dataset, 2) SynChOcc dataset, and build a variant of the test set of CelebA [16] 3)
noisy face set. A sample of the proposed ReaChOcc and SynChOcc datasets is shown in
Fig. 1. For quantitative evaluation, we use a total of 7 high-performing face recognition
models (the results of 2 are shown in the main paper and the remaining in supplementary)
to determine the perceptual accuracy between the input face image and the corresponding
rendered face. Our occlusion-based testing (real-life) and training (occluded with random
shapes) images belong to different domains. Therefore, our method is distinct from the con-
ventional data augmentation-based techniques, where the domains of test and training data
are needed to be the same.
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ReaChOcc

Clean Images

SynChOcc

Occluded Images

Figure 1: A demonstration of the samples from the proposed ReaChOcc and Syn-
ChOcc datasets. Our ReaChOcc contains unpaired clean images, whereas SynChOcc pro-
vides paired clean images for comparison.

2.2 Implementation Details

The proposed Self-Supervised RObustifying GUidancE (ROGUE) framework contains a co-
efficient network and two discriminators to facilitate the overall learning of the model. The
coefficient network exploits ResNet-50 as backbone architecture with a modified classifi-
cation layer by 257 nodes. The face images in the dataset are cropped, aligned (using
the method in [7]), and reshaped to size 224× 224. These images serve as the input to
our model. We opt for a batch of 5 for each case: clean images, occluded faces, and
noisy face images. Thus, the proposed network is trained with a net batch size of 15.
In addition, we exploit linear discriminators with 3 fully-connected layers containing 257,
124, and 2 nodes, respectively, in the Robustification Pipeline. Our model is initialized
with ImageNet weights [19]. In addition, an Adam optimizer [14] is deployed for train-
ing the model with an initial learning rate of 10−4 for the coefficient network and 10−8 for
the discriminators. The proposed model contains the Guidance Pipeline and the Robus-
tification Pipeline, where the weights associated with the losses in Guidance Pipeline are
αK = 1.6× 10−3,αGP = 1.92,αP = 0.2 and αR = 3× 10−4 (as in R-Net), and the weights
for Robustification Pipeline are βO = 1.92,βN = 1.92 and βC = 10−3 (please refer to Sec. 2.4
for more ablation experimental results).

2.3 More Experimental Results

This section qualitatively compares our method with DECA, MoFA, and R-Net on real-world
and synthetic occlusions, and noisy images. Moreover, we provide the quantitative evalua-
tion of our model on 7 face recognition models: VGG-Face [5], FaceNet [20], FaceNet-
512 [20], OpenFace [1], DeepFace [21], ArcFace [8] and SFace [23]. It is worth noting that
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Reported Robustness

Methods Learning Require
Real Occluded Input External Aid Real-world

Occlusions
Synthetic

Occlusions Noise

MoFA (TPAMI’18) N/A X N/A X × ×
3DMM (CVPR’05) N/A X N/A X × ×

Flow (Cambridge Press’03) N/A X N/A X × ×
3DFFA (CVPR’16) N/A X N/A X × ×

Sela et al. (ICCV’17) N/A X N/A X × ×
Tran et al. (CVPR’18) Weakly-Supervised X Bump Map X × ×
R-Net (CVPRW’19) Weakly-Supervised X Attention Mask X × ×

DECA (TOG’21) Weakly-Supervised X Attention Mask X × ×
MICA (ECCV’22) Fully-Supervised X Pre-trained ArcFace X × ×
ROGUE (Ours) Self-Supervised × No Aid Required X X X

Table 1: A comparison of the proposed method with various state-of-the-art approaches
based on the learning scheme, input constraints, the requirement of external aid, and the re-
ported robustness. Unlike SoTA approaches, our method performs well for four challenging
data variations, three variants of occlusions, and noise in the images, without posing any
dependency.

we demonstrate the perceptual results from DECA to emphasize the necessity of occlusion
robust 3D texture reconstruction. However, we understand that DECA is not designed for
occlusion-robust texture reconstruction. We also provide the details on how our work differs
from various other approaches in Table 1.

2.3.1 Qualitative Evaluation

To validate the generalization ability of our method, we rigorously test our model on real
and synthetic occlusion and noisy scenarios in the main paper. Following the course, in
Fig. 2, Fig. 3, and Fig. 4, we present various examples to show the robustness of our model
toward unseen real-life, synthetic occlusions and noisy challenging cases in the face images.
It is worth noting that the improvement over MoFA and R-Net is more evident when the
occlusion cover more than half of the face and the occlusion is not in skin color. Besides,
DECA reproduces occlusion on the 3D faces, thus following a different line of research. We
infer the same for the case of noisy face images. For a fair comparison, MoFA is re-trained to
reconstruct 3D faces with the same number of face vertices (N = 36K), and only the trained
CNN-based models (e.g., our coefficient network) are used at the inference stage.

2.3.2 Quantitative Evaluation

We investigate the quantitative performance for the real-world challenging occlusions, syn-
thetic challenging occlusions and noisy images. As evident in the qualitative results in the
main paper that only three methods, MoFA, R-Net, and DECA, reconstruct both 3D face
shape and texture; thus, we compare the quantitative performance of our method with these
three approaches.
1) Real-World Challenging Occlusions: Our quantitative results in Table 2 show better
perceptual accuracy for the reconstructed 3D face than R-Net and MoFA. Our proposed
method reduces perceptual errors between the vectors obtained from VGG-Face, FaceNet,
FaceNet-512, OpenFace, DeepFace, ArcFace, and SFace by a large margin of 17.44% (from
0.952 to 0.786), 21.55% (from 1.202 to 0.943), 25.8% (from 1.237 to 0.918), 11.3% (from
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Occluded 
Images

 
ROGUE 
(Ours)

R-Net  
(CVPRW'19)

MoFA  
(TPAMI'18)

DECA 
(TOG'21)

Figure 2: A qualitative comparison for different methods on real-life occlusions.

Clean  
Images

Occluded 
Images

R-Net 
 (CVPRW'19)

ROGUE  
(Ours)

MoFA
(TPAMI'18)

DECA  
(TOG'21)

Figure 3: A qualitative comparison for different methods on synthetic occlusions.

0.769 to 0.682), 8.1% (from 0.656 to 0.603), 21.9% (from 1.313 to 1.025), 13.4% (from
1.215 to 1.052), respectively, compared to MoFA. In addition, the proposed method reduces
5.8% (from 0.834 to 0.786), 8.0% (from 1.025 to 0.943), 12.1% (from 1.045 to 0.918),
11.3% (from 0.706 to 0.682), 3.4% (from 0.621 to 0.603), 13.7% (from 1.188 to 1.025),
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Clean  
Images

Noisy 
Images

R-Net  
(CVPRW'19)

MoFA 
 (TPAMI'18)

ROGUE  
(Ours)

DECA  
(TOG'21)

Figure 4: A qualitative comparison for different methods on noisy images (various noise
types).

6.0% (from 1.119 to 1.052) of the perceptual distance between vectors obtained using VGG-
Face, FaceNet, FaceNet-512, OpenFace, DeepFace, ArcFace, and SFace, respectively, from
R-Net. Moreover, the proposed method reduces 19.4% (from 0.975 to 0.786), 18.3% (from
1.154 to 0.943), 16.3% (from 1.097 to 0.918), 32.2% (from 1.005 to 0.682), 38.3% (from
0.977 to 0.603), 14.3% (from 1.196 to 1.025), 22.4% (from 1.356 to 1.052) of the percep-
tual distance between vectors obtained using VGG-Face, FaceNet, FaceNet-512, OpenFace,
DeepFace, ArcFace, and SFace, respectively, from DECA. All the above results show that
the proposed approach tackles real-world occlusions more effectively.

Perceptual Error (↓)
Methods VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

MoFA (TPAMI’18) 0.952±0.129 1.202±0.146 1.237±0.141 0.769±0.189 0.656±0.187 1.313±0.114 1.215±0.119
R-Net (CVPRW’19) 0.834±0.143 1.025±0.195 1.045±0.173 0.706±0.189 0.621±0.180 1.188±0.171 1.119±0.143

DECA (TOG’21) 0.975±0.131 1.154±0.178 1.097±0.176 1.005±0.207 0.977±0.111 1.196±0.176 1.356±0.105

ROGUE (Ours) 0.786±0.138 0.943±0.187 0.918±0.171 0.682±0.189 0.603±0.176 1.025±0.168 1.052±0.140

Table 2: A quantitative comparison of the perceptual error metric with other approaches on
the proposed ReaChOcc dataset, where the error numbers are the lower the better.

2) Synthetic Challenging Occlusions: To further investigate the impact of occlusions, we
build the synthetic occlusion set SynChOcc by overlaying natural occlusions at the specific
spatial location on clean face images, leading to much more challenging occlusion conditions
than the real-world ones. Synthetic occlusions are hard to be tackled. Thus, we present com-
prehensive comparisons of the proposed method with the other recent approaches in Table 3.
Our quantitative results show better perceptual accuracy for the reconstructed 3D face than



8 TIWARI ET AL.: SELF-SUPERVISED ROBUST MONOCULAR FACE RECONSTRUCTION

R-Net and MoFA. Our proposed method reduces perceptual distance between vectors ob-
tained from VGG-Face, FaceNet, FaceNet-512, OpenFace, DeepFace, ArcFace, and SFace
by a large margin of 15.8% (from 0.952 to 0.802), 23.0% (from 1.157 to 0.891), 26.4% (from
1.195 to 0.879), 2.6% (from 0.894 to 0.871), 0.8% (from 0.854 to 0.847), 23.4% (from 1.284
to 0.983), 18.1% (from 1.241 to 1.016), respectively, compared to MoFA. In addition, the
proposed method reduces 2.7% (from 0.824 to 0.802), 21.55% (from 0.968 to 0.891), 8.0%
(from 0.955 to 0.879), 11.3% (from 0.880 to 0.871), 1.0% (from 0.860 to 0.847), 13.1%
(from 1.131 to 0.983), 12.6% (from 1.162 to 1.016) of the perceptual distance between vec-
tors obtained using VGG-Face, FaceNet, FaceNet-512, OpenFace, DeepFace, ArcFace, and
SFace, respectively. Furthermore, our approach shows an improvement of 4.2% (from 0.837
to 0.802), 11.1% (from 1.002 to 0.891), 7.6% (from 0.951 to 0.879), 3.9% (from 0.906
to 0.871), 7.6% (from 0.917 to 0.847), 7.4% (from 1.061 to 0.983), 19.5% (from 1.262
to 1.016) in the perceptual distance between vectors obtained using VGG-Face, FaceNet,
FaceNet-512, OpenFace, DeepFace, ArcFace, and SFace, respectively than DECA.

Perceptual Error (↓)
Methods VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

MoFA (TPAMI’18) 0.952±0.130 1.157±0.133 1.195±0.126 0.894±0.196 0.854±0.165 1.284±0.150 1.241±0.129
R-Net (CVPRW’19) 0.824±0.155 0.968±0.186 0.955±0.187 0.880±0.195 0.860±0.165 1.131±0.194 1.162±0.170

DECA (TOG’21) 0.837±0.144 1.002±0.197 0.951±0.184 0.906±0.201 0.917±0.162 1.061±0.210 1.262±0.166

ROGUE (Ours) 0.802±0.151 0.891±0.179 0.879±0.174 0.871±0.195 0.847±0.165 0.983±0.186 1.016±0.168

Table 3: A quantitative comparison of the perceptual distance using perceptual error with
other approaches on the proposed SynChOcc dataset, where the error numbers are the lower
the better.

3) Noisy Faces: Finally, we investigate the case of noisy face images by introducing vari-
ous types of noise such as speckle, salt, pepper, Gaussian, etc. The quantitative results are
shown in Table 4. Our proposed method reduces perceptual distance between vectors ob-
tained from VGG-Face, FaceNet, FaceNet-512, OpenFace, DeepFace, ArcFace, and SFace
by a large margin of 19.6% (from 0.996 to 0.801), 22.9% (from 1.265 to 0.976), 22.7%
(from 1.245 to 0.963), 6.8% (from 0.923 to 0.860), 17.2% (from 0.791 to 0.655), 18.6%
(from 1.250 to 1.017), and 10.1% (from 1.260 to 1.133) respectively, compared to MoFA.
Moreover, the proposed method reduces 15.3% (from 0.946 to 0.801), 16.0% (from 1.165
to 0.979), 17.1% (from 1.161 to 0.963), 7.3% (from 0.928 to 0.860), 20.7% (from 0.826 to
0.655), 16.7% (from 1.221 to 1.017), 9.7% (from 1.255 to 1.133) of the perceptual distance
between vectors obtained using VGG-Face, FaceNet, FaceNet-512, OpenFace, DeepFace,
ArcFace, and SFace, respectively with regard to R-Net. Furthermore, our approach shows
an improvement of 16.2% (from 0.956 to 0.801), 17.6% (from 1.188 to 0.979), 17.5% (from
1.167 to 0.963), 21.0% (from 1.089 to 0.860), 29.0% (from 0.923 to 0.655), 13.1% (from
1.170 to 1.017), 13.6% (from 1.312 to 1.133) of the perceptual distance between vectors ob-
tained using VGG-Face, FaceNet, FaceNet-512, OpenFace, DeepFace, ArcFace, and SFace,
respectively with regard to DECA.

2.4 Ablation Studies

Impact of Occlusion Color and Size. A critical question also arises: How do colors and
sizes of occlusions affect the reconstructed 3D faces? To answer this, we present a detailed
study with various sizes and colors of facial occlusions across the fixed face image. In
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Perceptual Error (↓)
Methods VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

MoFA (TPAMI’18) 0.996±0.150 1.265±0.168 1.245±0.171 0.923±0.221 0.791±0.175 1.250±0.274 1.260±0.112
R-Net (CVPRW’19) 0.946±0.203 1.165±0.250 1.161±0.253 0.928±0.263 0.826±0.207 1.221±0.217 1.255±0.156

DECA (TOG’21) 0.956±0.204 1.188±0.262 1.167±0.295 1.089±0.223 0.923±0.151 1.170±0.298 1.312±0.142

ROGUE (Ours) 0.801±0.171 0.979±0.195 0.963±0.185 0.860±0.194 0.655±0.181 1.017±0.146 1.133±0.121

Table 4: A quantitative comparison of the perceptual error metric with other approaches on
the proposed noisy variant of CelebA-test dataset, where the error numbers are the lower the
better.

DECA
(TOG'21)

R-Net
(CVPRW'19)

MoFA
(TPAMI'18)

ROGUE
(Ours)

Occluded
Images

Impact of Occlusion Size Impact of Occlusion Color

Clean 
Image 

Figure 5: A qualitative comparison of the reconstructed 3D faces with other approaches
for different occlusion sizes and colors. The results show that the proposed method carries
better robustness against various colors and sizes of occlusions.

Fig. 5, it is observed that our method is highly robust to the sizes of occlusions. Moreover,
the reconstructed 3D faces are barely affected by the occlusion colors, showing that the
proposed model can handle heavily occluded facial regions with varying pixel values.
L2 vs. Adversarial Consistency: To show the effectiveness of our discriminator-based
loss, we replace it with naive L2 loss, and the performance degrades, indicating that L2 loss
is not enough to achieve consistency between clean and occluded/noisy images in terms of
coefficients. The experiments are performed on three datasets: 1) ReaChOcc, 2) SynChOcc,
and 3) noisy face set, as shown in Table 5, 6 and 7, respectively.
Choice of Weights for the Losses: To choose the weights associated with various losses
for training the Self-Supervised Robustifying Guidance, we perform several experiments as
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Perceptual Error (↓)
Losses VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

L2 0.879±0.132 1.135±0.147 1.184±0.149 0.751±0.186 0.648±0.185 1.283±0.138 1.157±0.162
Adversarial 0.786±0.138 0.943±0.187 0.918±0.171 0.682±0.189 0.603±0.176 1.025±0.168 1.052±0.140

Table 5: A quantitative comparison of the perceptual error metric with other approaches on
the proposed ReaChOcc dataset, where the error numbers are the lower the better.

Perceptual Error (↓)
Losses VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

L2 0.895±0.140 1.0753±0.150 1.116±0.141 0.880±0.196 0.954±0.159 1.227±0.159 1.114±0.152
Adversarial 0.802±0.151 0.891±0.179 0.879±0.174 0.871±0.195 0.847±0.165 0.983±0.186 1.016±0.168

Table 6: A quantitative comparison of the perceptual error with other approaches on the
proposed SynChOcc dataset, where the error numbers are the lower the better.

Perceptual Error (↓)
Losses VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

L2 0.943±0.157 1.197±0.184 1.198±0.161 0.774±0.185 0.676±0.180 1.239±0.116 1.238±0.106
Adversarial 0.798±0.173 0.976±0.198 0.959±0.187 0.706±0.195 0.611±0.181 1.014±0.148 1.127±0.123

Table 7: A quantitative comparison of the perceptual distance using perceptual error metric
with other approaches on the proposed noisy variant of CelebA-test dataset, where the error
numbers are the lower the better.

shown in Table 8 and 9. In Table 8, we vary the weights βO and βN associated with occlusion-
and noise-resistive photometric losses by fixing βC = 0.001 corresponding to consistency
loss. Besides, to obtain the best performance of the model against the consistency loss, we
fix βO = βN = 1.92 and vary the weight βC in Table 9. Based on the results in the tables, we
conclude that the finest performance of the proposed model is obtained at βO = βN = 1.92
and βC = 0.001.

Perceptual Error (↓)

Weights Real Synthetic Noisy

0.48 0.48 1.092±0.135 1.097±0.162 1.159±0.122
0.48 1.92 1.093±0.135 1.097±0.162 1.143±0.122
1.62 1.62 1.071±0.138 1.043±0.166 1.135±0.123
1.92 1.92 1.052±0.140 1.016±0.168 1.127±0.123
2.22 2.22 1.097±0.134 1.033±0.167 1.153±0.122
2.84 2.84 1.153±0.164 1.45±0.155 1.201±0.118

Table 8: Impact of weights associated with occlusion- and noise-resistive photometric losses
on our results. For this purpose, we fix βC = 10−3. The results are obtained using SFace.

Impact of Various Losses: To study the impact of losses for the occlusions, we perform a
quantitative analysis on the losses for the various cases: real-world occlusions, synthetic oc-
clusions and noisy face images. To answer this question, we train models with various com-
binations of the proposed losses and qualitatively evaluate them. We show these quantitative
results in Table 10 and 11, LO is insufficient to tackle real-world and synthetic occlusions.
In addition, LN is not effective for addressing the issue of occlusions. The combination of
LO and LN shows no significant improvement in performance. However, the combination of
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Perceptual Error (↓)

Weights Real Synthetic Noisy

0.0001 0.148±0.163 1.420±0.0154 0.196±0.118
0.001 1.052±0.140 1.016±0.168 1.127±0.123
0.01 1.157±0.161 1.125±0.149 1.206±0.117

Table 9: Impact of weights associated with discriminator loss on our results. For this pur-
pose, we fix βO = βN = 1.92. The results are obtained using SFace.

the consistency loss LC and LO significantly improves the 3D vertex accuracy for delusional
occlusions. Finally, by exploiting the losses LO, LN , and LC altogether, we obtain the best
performance of the proposed model. For the noisy image, Table 12 shows that the loss LO
does not contribute towards the improvement in the model performance. Besides, LN alone
is insufficient to tackle the face image noise. An improvement is observed in exploiting LC
for training the proposed model. The results demonstrate that the best model performance
for noisy inputs can be obtained by either deploying a combination of LC and LN or using
all three losses. We conjecture that the loss LO is dedicated to addressing the issue of occlu-
sions. Thus, the improvement is not significant when all three losses are used as compared to
the grouping of LN and LC. However, their cumulative usage is crucial for real-life scenarios
as the face images contain both occlusions and noise.

Losses Perceptual Error (↓)
LO LN LC VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

0.952±0.129 1.202±0.146 1.237±0.141 0.769±0.189 0.656±0.187 1.313±0.114 1.215±0.119
X 0.874±0.134 1.116±0.153 1.177±0.151 0.746±0.189 0.641±0.187 1.278±0.129 1.151±0.126

X 0.952±0.129 1.202±0.146 1.237±0.141 0.769±0.189 0.656±0.187 1.313±0.114 1.215±0.119
X 0.813±0.136 1.034±0.178 1.015±0.163 0.703±0.189 0.624±0.181 1.243±0.159 1.097±0.134

X X 0.874±0.134 1.116±0.153 1.177±0.151 0.746±0.189 0.641±0.187 1.278±0.129 1.151±0.126
X X 0.786±0.138 0.943±0.187 0.918±0.171 0.682±0.189 0.603±0.176 1.025±0.168 1.052±0.140

X X 0.813±0.136 1.034±0.178 1.015±0.163 0.703±0.189 0.624±0.181 1.243±0.159 1.097±0.134
X X X 0.786±0.138 0.943±0.187 0.918±0.171 0.682±0.189 0.603±0.176 1.025±0.168 1.052±0.140

Table 10: A quantitative comparison of the perceptual error with other approaches on the
proposed ReaChOcc dataset, where the error numbers are the lower the better.

Losses Perceptual Error (↓)
LO LN LC VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

0.952±0.130 1.157±0.133 1.195±0.126 0.894±0.196 0.854±0.165 1.284±0.150 1.241±0.129
X 0.894±0.140 1.065±0.152 1.056±0.147 0.880±0.196 0.851±0.165 1.167±0.164 1.143±0.154

X 0.952±0.130 1.157±0.133 1.195±0.126 0.894±0.196 0.854±0.165 1.284±0.150 1.241±0.129
X 0.823±0.146 0.936±0.161 0.978±0.159 0.879±0.196 0.849±0.165 1.093±0.179 1.098±0.161

X X 0.894±0.140 1.065±0.152 1.056±0.147 0.880±0.196 0.851±0.165 1.167±0.164 1.143±0.154
X X 0.802±0.151 0.891±0.179 0.879±0.174 0.871±0.195 0.847±0.165 0.983±0.186 1.016±0.168

X X 0.823±0.146 0.936±0.161 0.978±0.159 0.879±0.196 0.849±0.165 1.093±0.179 1.098±0.161
X X X 0.802±0.151 0.891±0.179 0.879±0.174 0.871±0.195 0.847±0.165 0.983±0.186 1.016±0.168

Table 11: A quantitative comparison of the perceptual error with other approaches on the
proposed SynChOcc dataset, where the error numbers are the lower the better.
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Losses Perceptual Error (↓)
LO LN LC VGG-Face FaceNet FaceNet-512 OpenFace DeepFace ArcFace SFace

0.934±0.151 1.209±0.187 1.203±0.159 0.799±0.183 0.689±0.178 1.283±0.107 1.256±0.115
X 0.934±0.151 1.209±0.187 1.203±0.159 0.799±0.183 0.689±0.178 1.283±0.107 1.256±0.115

X 0.883±0.162 1.195±0.188 1.140±0.175 0.768±0.188 0.671±0.180 1.191±0.123 1.198±0.118
X 0.809±0.168 1.096±0.194 1.074±0.183 0.741±0.191 0.637±0.180 1.085±0.136 1.153±0.121

X X 0.883±0.162 1.195±0.188 1.140±0.175 0.768±0.188 0.671±0.180 1.191±1.123 1.198±0.118
X X 0.809±0.168 1.096±0.194 1.074±0.183 0.741±0.191 0.637±0.180 1.085±0.136 1.153±0.121

X X 0.798±0.173 0.976±0.198 0.959±0.187 0.706±0.195 0.611±0.181 1.014±0.148 1.127±0.123
X X X 0.798±0.173 0.976±0.198 0.959±0.187 0.706±0.195 0.611±0.181 1.014±0.148 1.127±0.123

Table 12: A quantitative comparison of the perceptual error metric with other approaches
on the proposed noisy variant of CelebA-test dataset, where the error numbers are the lower
the better.

3 More Discussions

3.1 R-Net and MoFA on Our Variant Datasets

One question may arise: What if R-Net and MoFA are also trained using our occluded and
noisy images? Unfortunately, the original R-Net [9] is unsuitable to get trained on the variant
datasets mainly due to the unreliable skin masks. Occlusions and image noise would distort
the estimated skin masks, and the model may adapt to the distortions as the facial features. To
make the model suitable to work with our occluded and noisy images, we exploit clean skin
masks instead of regressing the pixel values of projected 3D faces directly on input images as
in the original R-Net framework. Note that R-Net relies on the estimated skin masks to tackle
minor occlusions, whereas our method can tackle heavy occlusion and noise issues without
the mask dependency and tweaking tricks as mentioned above, indicating a wider usage
of our ROGUE framework. The results for R-Net, re-trained on our variant datasets with
clean skin masks, are much worse than ours, indicating that the proposed Robustification
Pipeline can obtain better robustness than the skin mask technique, as shown in the second
row of Table 13 and 14. Finally, MoFA [22] is also not designed to address heavy occlusions
and noise. We re-trained MoFA with our variant datasets, and the reconstruction errors
are much larger than ours, as shown in the first row of Table 13 and 14. All the results
show that the superior performance of our method is not solely because of the variant data.
Compared with MoFA and R-Net, our ROGUE framework can exploit all the variant data
well, obtaining a more robust model for 3D face reconstruction.
Limitations with DECA: DECA [10] reproduces occlusions on the 3D faces instead of
removing them. Therefore, re-training of DECA on our dataset holds minimal significance.

MICC

Methods Cooperative Indoor Outdoor

MoFA 2.29±0.57 2.29±0.54 2.37±0.62
R-Net + clean mask 1.96±0.54 1.95±0.51 2.03±0.58

ROGUE (Ours) 1.69±0.51 1.69±0.47 1.73±0.56

Table 13: A quantitative analysis on the Synthetic Occlusion variant of the standard MICC
dataset [2].

Citation
Citation
{Deng, Yang, Xu, Chen, Jia, and Tong} 2019{}

Citation
Citation
{Tewari, Zollhofer, Kim, Garrido, Bernard, Perez, and Theobalt} 2017

Citation
Citation
{Feng, Feng, Black, and Bolkart} 2021

Citation
Citation
{Bagdanov, Delprotect unhbox voidb@x protect penalty @M  {}Bimbo, and Masi} 2011



TIWARI ET AL.: SELF-SUPERVISED ROBUST MONOCULAR FACE RECONSTRUCTION 13

MICC

Methods Cooperative Indoor Outdoor

MoFA 2.49±0.65 2.49±0.62 2.66±0.69
R-Net + clean mask 2.09±0.59 2.09±0.57 2.21±0.61

ROGUE (Ours) 1.85±0.53 1.85±0.50 1.91±0.58

Table 14: A quantitative analysis on the Noisy variant of the standard MICC dataset [2].

3.2 Comparison with High-Fidelity Face Reconstruction Methods

Recent GAN-based methods [6, 11, 12, 15, 18] show good performance of reconstructing
facial details for 3D faces, such as wrinkles, pores, folds, etc. These methods focus on pro-
ducing detailed high-fidelity facial textures, whereas ROGUE focuses on addressing the is-
sues of large-scale occlusions and noise for 3D face reconstruction without posing additional
dependencies, which are different aspects. Moreover, the ideas of these high-fidelity recon-
struction methods are complementary to our method and can be integrated into our Guidance
Pipeline to improve the texture details (without costing the robustness performance because
of the Robustification Pipeline), which could be our future work.

3.3 Potential Negative Societal Impact

The proposed method estimates the closest possible 3D face from the occluded and noisy
face images. The technology is highly efficient and effective but is not 100% perfect. This
may lead to cumbersome situations, mainly when used with face recognition systems for
identifying masked criminals at the crime scene. The situation might end up in capturing
an innocent person. Along with the impact mentioned above, invasion of privacy is also
a concern with such a technology. The estimation of 3D facial data from occluded images
might raise concern among those who do not want to reveal their identity in certain situations.
The negative impacts may be compensated by boosting the model’s accuracy by deploying
multiple copies of the same face image occluded with different patterns enabling the model to
learn the significance of the visible region for reconstructing 3D face geometry and texture.

3.4 Limitations

The proposed Self-Supervised Robustifying Guidance network addresses the issues of oc-
clusions and noise in monocular face images for reconstructing a 3D face. However, the
method requires pre-processing of the images before serving them as the input to Guidance
Pipeline and Robustification Pipeline. This increases the net time required for training the
proposed model. Further, the automated pre-processing may fail for several reasons, for ex-
ample, the inability of the face detection model to detect the face in the image, thus posing
a challenge to the proposed approach. This issue may be addressed by deploying domain
adaptation or generalization techniques in which the model learns the 3D face without re-
quiring pre-processed face data. In addition, our method currently addresses occlusion and
noise issues, which cover most but not all the distortion types for faces. This issue can be
addressed by extending the ROGUE framework with more distortion types, such as blur or
image compression. We plan to investigate these directions in our future work.
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