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Abstract
The estimation of 6D poses of rigid objects is a fundamental problem in computer

vision. Traditionally pose estimation is concerned with the determination of a single best
estimate. However, a single estimate is unable to express visual ambiguity, which in
many cases is unavoidable due to object symmetries or occlusion of identifying features.
Inability to account for ambiguities in pose can lead to failure in subsequent methods,
which is unacceptable when the cost of failure is high. Estimates of full pose distribu-
tions are, contrary to single estimates, well suited for expressing uncertainty on pose.
Motivated by this, we propose a novel pose distribution estimation method. An im-
plicit formulation of the probability distribution over object pose is derived from an in-
termediary representation of an object as a set of keypoints. This ensures that the pose
distribution estimates have a high level of interpretability. Furthermore, our method is
based on conservative approximations, which leads to reliable estimates. The method has
been evaluated on the task of rotation distribution estimation on the YCB-V and T-LESS
datasets and performs reliably on all objects.

1 Introduction
Many robotics applications which involve the manipulation of rigid objects require accurate
knowledge of object poses to succeed. The topic of pose estimation has, thus, received
considerable attention from the computer vision community. While the literature on pose
estimation covers many different sensor modalities, pose estimation from an RGB image
remains highly relevant due to the low cost of industry-grade RGB cameras.

The majority of the literature on pose estimation is concerned with the estimation of a
single best estimate of object pose. However, a single estimate is inherently ill-suited to
express visual ambiguity which is unavoidable in many practical applications due to occlu-
sions, poor image and lighting conditions, or object symmetries. In recent years there has,
therefore, been an increasing interest in the estimation of probability distributions over object
pose.

Distribution estimates are especially valuable when used in contexts with a high cost of
failure such as robotic grasping. In such contexts, it is favorable to postpone a task until the
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task’s probability of success is above a certain threshold. While a rough estimate of task
success can be computed from a single pose estimate with associated variance, a full pose
distribution allows for more advanced probability-based inference of task success. Over-
confident estimates of uncertainty can, however, still lead to failure, so it is crucial that the
estimates are reliable, in the sense that the false positive rate is low. Underconfident esti-
mates simply risk being so uncertain that subsequent tasks are not performed, even when the
information necessary for successful completion was available. However, this can be alle-
viated through sensor fusion with additional views which the distribution estimates are well
suited for.

Estimating a full 6D probability distribution over object pose is non-trivial, and most
prior work focuses on rotation distribution estimation, modeling the uncertainty either as a
mixture of parametric distributions or as a probability mass function over sampled rotations
in SO(3). We argue that both methods are somewhat limited in their descriptive ability,
restricted by the number of distributions or the number of samples, respectively.

Our contribution is a pose distribution estimation method that estimates a probability
density function over object pose from a single RGB image. The function is formulated im-
plicitly which enables the predicted distribution to be continuous without being constrained
by the descriptive ability of parametric distributions. The formulation is based on an explicit
derivation of the probability density function using object keypoints as an intermediary rep-
resentation of object pose. This increases the interpretability of the estimates as illustrated
in Fig. 1, which shows estimated keypoint distributions and resulting pose distribution for
three different objects. Our method is based on conservative approximations which ensures
a high level of reliability.

The scope of the evaluation is limited to rotation distribution estimation. This is done to
allow for comparison to existing methods, which primarily focus on estimating the distribu-
tion on SO(3). Our method is evaluated on the YCB-V and T-LESS datasets and compared
to previously published results of state-of-the-art methods.

The paper is organized as follows: Section 2 presents related work, followed by section
3 in which our method is presented. The implementation of the method together with the
experimental procedure is presented in section 4, and results are shown and discussed in
section 5. Finally section 6 presents the conclusion.

2 Related work
The estimation of object pose from a single RGB image is a topic that has received extensive
study by the machine vision community. Our method is inspired by single pose estimation
methods that rely on locating object keypoints in images through the estimation of heatmaps,
which encode the probability distribution of the keypoints, e.g. [13].

When object keypoints are easily recognizable, such that their uncertainty distribution
in the image plane is approximately Gaussian, it is possible to analytically propagate the
uncertainty from keypoints to pose [5]. However, the assumption of normality becomes very
poor when visual ambiguities are present.

One approach to estimating a pose distribution is by representing the distribution as an
ensemble of pose estimates from one or more pose estimation methods [9, 14, 17]. These
methods rely on the assumption that the ensemble accurately represents the true pose distri-
bution. However, unless the pose estimators generating the ensemble are explicitly trained
for this, it is questionable if the estimated pose distribution reflects the true distribution.
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Figure 1: Visualization of an image crop, the logarithm of the marginal probability distribu-
tions for the first three keypoints, and a visualization of the resulting orientation distribution.
The rows shows the YCB-V sugar box, YCB-V large clamp, and T-LESS object 1.

Pose distributions are often multimodal and difficult to model analytically. Therefore,
it is common to assume that the rotational and positional part of the distribution is decou-
pled, assume that the object position is normally distributed, and focus on object rotation
estimation. A common approach to rotation distribution estimation is to sample SO(3) and
attribute a probability to each unique rotation. This has been done using a confusion matrix
constructed from training data [10], treating rotation estimation as a discrete classification
problem [18], or training a network to compute latent features which implicitly encode ori-
entation such that comparison between sampled rotations and a query image is done in latent
space. This has both been done with an autoencoder using cosine distance to measure la-
tent feature similarity [3, 19], or using the latent features from an existing pose estimator
combined with an MLP network for regressing unnormalized likelihood [14].

An alternative to the sampling approach is to model the pose distribution using paramet-
ric distributions. Although it has been argued that the Matrix Fisher distribution is well suited
for deep learning-based parameter regression [11], the most common choice of orientation
distribution is the Bingham distribution since it explicitly handles the antipodal symmetry of
unit quaternions, which are often used to parameterize orientation. Since unimodal distribu-
tions are unable to express multiple orientation ambiguities, several works estimate the pose
uncertainty as a mixture of Binghams. This has been done by fitting Bingham distributions
to the output of a multiple hypotheses pose estimator [9], or direct regression of the Bingham
parameters using deep learning [2, 6, 14]. Related is [15] in which a network is trained to
estimate 1D rotation distributions as mixtures of von Mises distributions.

Similar to our method, [12] proposes to express the probability density function implic-
itly. In their work, a network is trained end-to-end to output the unnormalized likelihood
from an image and a query pose. The likelihood function is then normalized using an equiv-
olumetric grid. Unlike [12], our method uses an intermediary representation which increases
the interpretability of the pose distribution estimates. Furthermore, our intermediary rep-
resentation is translation equivariant, making it automatically generalize to arbitrary image
translations, which is arguably the most important regularization on the image domain.
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3 Method
Our method uses object keypoints as a means to estimate object pose. N keypoints are
defined in the object’s reference frame and a network is trained to estimate the marginal
probability distributions over the keypoints’ projections on the image plane. These marginal
distributions will be referred to as heatmaps. The pose distribution is formulated implicitly,
in that given a query pose and the heatmaps, the method returns the unnormalized likelihood
of the given pose. The normalized likelihood can then be computed using a sampling-based
strategy.

The following three subsections discuss the details of our method. Section 3.1 derives
and discusses the relationship between pose distribution and image keypoints as well as the
approximations needed when using marginal instead of conditional probabilities. Section
3.2 discusses the training of the network which estimates the heatmaps. Finally, section 3.3
discusses the sampling-based method of normalization.

3.1 Relationship between pose distribution and keypoints
Pose estimation from a single RGB camera is defined as the estimation of an object’s pose, θ ,
which consists of the rotation, R∈ SO(3), and translation, t ∈R3, relative to the camera from
a single RGB image I. Pose distribution estimation can then be defined as the estimation of
a probability density function over object pose conditioned on the input image, p(θ |I).

In the proposed method N object keypoints are used to model the correspondence be-
tween an object and its projection on the image plane. The keypoints, Ki ∈ R3, are defined
relative to the object reference frame. Given an object pose and camera intrinsics the 3D
keypoints can be projected onto the image plane resulting in N 2D keypoints, ki ∈R2. Using
the law of total probability, the keypoints as an intermediary representation, and the chain
rule, the pose distribution can be reformulated as:

p(θ |I) =
∫

p(θ ,k|I)dk =
∫

p(θ |k, I)p(k|I)dk (1)

where p(k|I) is the joint distribution over ki for i = 1,2...,N conditioned on the image,
and p(θ |k, I) is the distribution over object pose conditioned on both the image and a fixed
keypoint configuration. A set of four or more non-colinear keypoints uniquely define an
object pose, so the likelihood p(θ |k, I) will only be non-zero for the unique pose where the
projection of keypoints K on the image plane is identical to the keypoint configuration k.
This can be expressed using the Dirac delta function as:

p(θ |k, I) = δ (kθ−k) (2)

where kθ is the projection of the keypoints K using the camera intrinsics and the pose θ .
Using Eq. 2 the integral in Eq. 1 can be rewritten as:

p(θ |I) =
∫

δ (kθ−k)p(k|I)dk = p(kθ|I) (3)

Eq. 3 states that the likelihood of the object being in pose θ is equal to the joint likelihood
of observing the keypoint configuration kθ.
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While estimating the joint distribution over keypoints p(k|I) is non-trivial, the estimation
of the marginal likelihoods, p(ki|I) are more easily achieved. A common approximation of
the joint distribution from marginal distributions is the assumption of independence:

p(k)≈ p(k1)p(k2)...p(kN) (4)

However, when the assumption of independence is invalid the approximation can be very
poor. The effect is most extreme when all keypoints are strongly coupled such that the value
of a single keypoint uniquely defines the rest. If k -i is used to denote all keypoints excluding
ki, the chain rule states that p(k) = p(k -i|ki)p(ki). Under strong coupling and assuming a
valid configuration k, this simplifies to p(k) = p(ki). The product of the marginals in the
extreme case thus yields p(k1)p(k2)...p(kN) = p(k)N . Consequently, under strong coupling,
the joint distribution can be computed from the marginals as:

p(k) = N
√

p(k1)p(k2)...p(kN) (5)

Eq. 4 and 5 express two extremes. The error of using 4 when the keypoints are strongly
coupled is to diminish regions of low probability while using 5 when the keypoints are
loosely coupled will lead to an attenuation of regions of low probability. As discussed in
Sec. 1, it is crucial that estimates are not overconfident, while underconfident estimates are
acceptable. For this reason, our method uses the conservative approximation formulated in
Eq. 5. Combining Eq. 3 and 5 yields:

p(θ |I)≈ p̂(θ |I) =C N

√
N

∏
i=1

p(kθ ,i|I) (6)

where C is a normalization constant.

A note on constraint relaxation

The one-to-one correspondence between a pose θ and the keypoint configuration kθ ex-
pressed in Eq. 2, may seem strict considering potential discrepancies between the real-world
objects and their synthetic counterparts, on which we train. Theoretically, if the individual
keypoints are very well localized in the heatmaps, but there are significant systematic errors
due to the sim-to-real domain gap, it would be possible to encounter situations where there
does not exist a pose θ where p̂(θ |I) ̸= 0. However, the Dirac delta constraint is implicitly
relaxed when the heatmap distributions have a dispersion that is relatively large compared
to the systematic errors from the discrepancies, so additional relaxation was not found to be
required.

3.2 Keypoint heatmaps
The proposed method assumes that an object detector is available to provide an r× r crop
of the object, where r is the crop resolution. It is assumed that this crop contains the entire
object, both visible and occluded parts, such that all keypoints are inside the crop. The
heatmaps are estimated from the crops using a U-Net [16], with an RGB image as input
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(r× r×3) and the heatmaps as output (r× r×N), where the i’th channel in the output is an
estimate of p(ki|I).

To learn the heatmaps p(ki|I), we represent the problem as spatial classification using
cross-entropy loss, where the i’th channel represents a discrete distribution over the r × r
pixels, and the ground truth class is the nearest pixel to the projected keypoint ki. Identifica-
tion of the exact nearest pixel may encourage overfitting, so as to avoid this, we regularize
the training by instead setting the ground truth heatmap to an isotropic Gaussian centered
around the ground truth keypoint, p(ki|I) =N (ki,σ). The total loss is then a sum over the N
cross-entropy losses:

L =−
N

∑
i=1

N (ki,σ) log p̂(ki|I) (7)

3.3 Normalization
The normalization constant C in Eq. 6 can be approximated by densely sampling SE(3) and
choosing C such that ∑θi∈SE(3) P̂(θi|I) = 1, where P̂(θi|I) is used to denote the probability
mass of sample i. However, even when the spatial dimensions are bounded, densely sampling
SE(3) requires a very large number of samples, since with n samples along a dimension the
computational complexity is O(n6). For dense sampling to be feasible, the computation of
likelihood must be both fast and parallelizable. Our method has been explicitly developed
for this and is capable of computing the likelihood for millions of samples pr. second. This is
possible because the image only has to be passed through the network once, after which the
computation of likelihood for a single sample only requires the projection of the keypoints
followed by a lookup in the heatmaps, all of which are done in parallel on a GPU.

The sampling of SO(3) is done using the method presented in [21] as suggested by [12].
The method decouples a rotation into the direction of the frame’s z-axis expressed as a point
on a 2D unit sphere, and a tilt around the z-axis. The unit sphere is sampled in an equiarea
grid using the HEALPix method[7], while the sampling of the tilt is chosen to make the sides
of each volume element equal. This creates an equivolumetric grid with each volume being
Vgrid = π2/M, where M is the number of samples in the grid. The sampling method divides
SO(3) recursively and for s recursions the number of samples is M = 72 ·8s. Since the grid
is equivolumetric, the likelihoods can be approximated from the probability masses using
p̂(θi|I)≈ P̂(θi|I)/Vgrid.

4 Experiments
The implementation of the proposed method uses the U-Net implementation from [20],
which uses a ResNet-18 backbone pretrained on ImageNet. The number of keypoints is
chosen to be N = 16. The object keypoints K are chosen using furthest distance sampling,
which ensures that the keypoints are spread out over the surface of the object. The model
is trained using physically-based BlenderProc [4] renderings provided in the YCB-V and T-
LESS parts of the BOP-challenge dataset [8]. The standard deviation of the Gaussian used in
the loss function was set to 1px and the training was done for 10 epochs on a GeForce GTX
1080 Ti GPU. To avoid training on images where most of the object is outside the image or
the object is occluded, the training is only performed on images for which the object appears
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Summary of Evaluation in [14]
I II III IV Ki-Pode (ours)

master chef can -0.78 -1.66 2.32 0.09 4.36
cracker box 4.03 3.75 -0.09 3.71 6.05
sugar box 3.77 5.94 2.62 4.20 6.47
tomato soup can 0.90 2.02 2.52 3.99 5.16
mustard bottle 3.85 4.61 3.02 4.81 5.45
tuna fish can -3.12 -0.20 2.64 1.23 5.10
pudding box 2.18 2.64 3.13 4.54 4.91
gelatin box 4.65 6.25 3.53 5.73 6.35
potted meat can 1.18 3.28 1.60 3.06 3.11
banana 2.58 0.58 2.27 3.70 4.80
pitcher base 3.34 4.68 2.35 4.88 5.39
bleach cleanser 3.91 4.70 2.29 3.38 4.02
bowl 1.37 -2.77 -1.21 -9.62 -1.50
mug 3.73 2.50 2.75 4.72 4.62
power drill 4.31 5.92 2.43 4.17 6.14
wood block 2.64 -2.09 -0.51 4.49 -1.76
scissors 3.74 0.51 0.66 1.63 5.49
large marker -7.59 -0.29 1.02 -8.13 3.94
large clamp -5.64 -6.67 -1.63 -3.54 3.07
extra large clamp -5.20 -2.92 0.19 -5.03 2.25
foam brick -0.26 -2.28 1.70 -12.0 2.44
All 0.86 1.71 1.74 1.43 4.09

Table 1: The table shows the mean log-likelihood score for our method as well as the
top 4 performing pose distribution methods from [14]. The roman numerals refer to the
methods I: Conf w/DenseFusion, II: Reg ISO w/DenseFusion, III: Comp w/PoseCNN, and
IV: Dropout w/PoseCNN. For a description of each method see the original paper. Italic
font is used to highlight the best performance among the evaluations in [14], while bold font
highlights the best performance among all methods including ours. Red highlights scores
below -2.29 which is worse than a uniform distribution.

in the image and is at maximum 95% occluded. During training, the images are augmented
using random gamma, Gaussian blur, Gaussian noise, ISO noise, and color jitter [1], as well
as random scaling, rotation, and translation of the image crop. Our implementation of the
SO(3) grid sampling method is based on the one provided by [12].

The evaluation focuses on estimating the rotation distribution, p̂(R|I), such that the pro-
posed method can be compared with existing works. Our method estimates an implicit distri-
bution on SE(3), so the rotational part of the distribution must be marginalized by integrating
over the spatial dimensions. The normalization relies on a dense sampling of the pose space
so the limiting factor on the sampling density is computation time. In this evaluation, the
number of samples has been chosen such that the computation time is well under a second.
The resolution of rotation space has been prioritized, so the rotational space has been sam-
pled using 3 HEALPix recursions (72 ∗ 83 = 36864 samples) while the spatial dimensions
perpendicular to the camera axis are sampled in an 11x11 grid around an estimated object
position (121 samples covering a 10mm× 10mm area) for a total of 4.46 million samples.
The computation of all samples takes approximately 100 ms on a GeForce GTX 1080 Ti
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GPU. The marginal rotation distribution is then computed by numerically integrating over
grid positions: p(Ri|I) =

∫
p(Ri, t|I)dt ≈

(
∑t∈tgrid

P̂(Ri, t|I)
)
/Vgrid

As stated in Sec. 3.2 it is assumed that an object detector provides a bounding box
around the object. In the evaluation, the bounding box is chosen to be 20% larger than a
tight crop, and uncertainty on estimation is simulated by using the ground truth bounding
box with a random scaling of ±5% and a random translation computed such that the object
remains fully inside the crop. Furthermore, it is assumed that an estimate of the object
position is provided by the object detector, which is simulated by using the ground truth
object position with added uniform noise of ±10mm on all three dimensions. The spatial
grid in the normalization is centered around this estimate.

The implementation is evaluated on the test part of the BOP version of the YCB-V and
T-LESS datasets. The rotation distribution across the SO(3) grid is estimated and the log-
likelihood of the ground truth rotation is chosen as the closest sample in the grid. The mean
loglikelihood score (meanLL) for a single object is then computed by averaging across all
images of the object and the dataset score is computed by averaging over the meanLL scores
for objects in the dataset. The results of the evaluation on the YCBV and T-less datasets are
compared to the results published in [14] and [12] respectively.

The evaluation also presents a qualitative evaluation of our method’s interpretability in
the form of heatmaps and orientation distributions for three representative objects. The visu-
alization of the rotation distribution is inspired by [12]. For the visualization, an orientation
is parameterized by the direction of the object’s canonical x-axis expressed as longitude and
latitude (a,b), and the tilt c around the x-axis. The distribution is then visualized by plotting
(a,b) using a Mollweide projection, indicating c with color, and indicating the probability
mass with the alpha value: αi = Pi/Pmax. The ground truth pose is indicated with an x.
The visualization is created using the ground truth crop and object position, and 5 HEALPix
recursions.

To investigate the impact of sampling density on the meanLL score, the score has been
computed for increasing numbers of recursions of the HEALPix method, using the ground
truth crop and object position. The number of samples also determines the theoretical maxi-
mum of the log-likelihood, with the limit being when a single sample has a probability mass
of one, which corresponds to a log-likelihood of V−1

grid = M/π2.

5 Results

The evaluation in [14] evaluated 9 different approaches for pose distribution estimation. Each
approach was implemented twice using either DenseFusion or PoseCNN as the basis of the
implementation, which resulted in a comparison of 18 different methods. Our analysis of
the reported results reveals that four of the methods can account for all but one of the per-
object best results. The condensed summary shown in Table 1 shows that no single method
was able to perform well on all objects. The results show that our method is superior for
most objects. The relatively low meanLL for the wood block and bowl can be attributed
to the many discrete and continuous symmetries respectively. In such cases, there will be
many orientations with a low probability that should have been zero. These regions are
attenuated due to the approximation of Eq. 5, leading to dispersed probability distributions.
It is important to note that unlike method I, II, and IV, our method doesn’t have a meanLL
score less than -2.29 which correspond to a uniform distribution on SO(3).
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Deng1 5.3
Gilitschenski1 6.9
Prokudin1 8.8
IPDF1 9.8
Ki-Pode (ours) 3.3

Table 2: MeanLL score on the T-LESS dataset (1Results published in [12]).
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Figure 2: The impact of sampling density on the meanLL score. The x-axis shows the
number of healpix recursions used to generate the equivolumetric grid on SO(3), and the
corresponding number of samples. The theoretical upper bound on the log likelihood for
recursions 2-5 is respectively 6.1, 8.2, 10.3, and 12.4.

The evaluation of different state-of-the-art methods on the T-LESS dataset published in
[12] does not contain per object evaluations, so only the meanLL score over all objects is
computed. The scores from [12] and our method is shown in Table 2. The T-LESS dataset
contains many objects with near rotational symmetry, which for our method, as discussed
for the bowl in YCB-V, leads to relatively modest performance, presumably because we only
model keypoint marginals. Our method is fundamentally different from previous work and
can be considered an early work towards interpretable and translational equivariant repre-
sentations for pose distributions with great potential for further improvements. For instance,
an efficient auto-regressive model using this formulation would be able to represent the joint
keypoint distributions.

To qualitatively evaluate the interpretability of our method, Fig. 1 shows image crops,
the logarithm of heatmaps, and rotation distribution for three representative objects. The first
row shows an object for which most keypoints are well localized, leading to a single well-
defined orientation. The second row shows an object with a discrete 180-degree rotation
symmetry which in the heatmaps appears as two peaks. The third row shows an object with
near rotational symmetry. It is clear from the heatmaps, that the U-Net is able to locate the
keypoints as lying on ellipses, but cannot detect that there is only near rotational symmetry.
Furthermore, the ellipses are dispersed which leads to uncertainty of the direction of the
symmetry axis. The resulting orientation distribution appears as a continuous region on
SO(3) as shown in the orientation visualization.

The impact of sample density on the meanLL score is shown in figure 2. The analysis
indicates that increasing sample density improves the score with diminishing returns as the
number of samples increases. The computation time scales linearly with the number of sam-
ples, which increases by a factor of 8 for each HEALPix recursion. As discussed in Sec. 4,
using 3 recursions and an 11× 11 spatial grid takes approximately 100ms, so a rough esti-
mate of the computation time with 4 or 5 recursions is 0.8s or 6.4s respectively. Ultimately,
the choice of how many recursions to use will depend on the available computational budget.
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6 Conclusion

We have proposed a novel method for estimating a probability density function over 6D ob-
ject poses. The distribution is formulated implicitly using keypoints as an intermediary ob-
ject representation which ensures a high expressiveness of the distribution as well as a high
level of interpretability of the estimates. The proposed method approximates the probability
distribution from marginal distributions over object keypoints and is based on conservative
approximations which leads to high reliability of the results. The method has been evalu-
ated on the YCB-V and T-LESS datasets and has been confirmed to perform reliably on all
objects.
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Frank Michel, Carsten Rother, and Jiří Matas. BOP challenge 2020 on 6D object
localization. European Conference on Computer Vision Workshops (ECCVW), 2020.

[9] Fabian Manhardt, Diego Martin Arroyo, Christian Rupprecht, Benjamin Busam, Tolga
Birdal, Nassir Navab, and Federico Tombari. Explaining the ambiguity of object de-
tection and 6d pose from visual data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6841–6850, 2019.

[10] Zoltán Csaba Márton, Serkan Türker, Christian Rink, Manuel Brucker, Simon Kriegel,
Tim Bodenmüller, and Sebastian Riedel. Improving object orientation estimates by
considering multiple viewpoints. Autonomous Robots, 42(2):423–442, 2018.

[11] David Mohlin, Josephine Sullivan, and Gérald Bianchi. Probabilistic orientation es-
timation with matrix fisher distributions. Advances in Neural Information Processing
Systems, 33:4884–4893, 2020.

[12] Kieran A Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, and Ameesh
Makadia. Implicit-pdf: Non-parametric representation of probability distributions on
the rotation manifold. In Proceedings of the 38th International Conference on Machine
Learning, pages 7882–7893. PMLR, 2021.

[13] Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prendergast. Numerical coordinate
regression with convolutional neural networks. arXiv preprint arXiv:1801.07372, 2018.

[14] Brian Okorn, Mengyun Xu, Martial Hebert, and David Held. Learning orientation
distributions for object pose estimation. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 10580–10587. IEEE, 2020.

[15] Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. Deep directional statistics:
Pose estimation with uncertainty quantification. In Proceedings of the European con-
ference on computer vision (ECCV), pages 534–551, 2018.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer Inter-
national Publishing. ISBN 978-3-319-24574-4.

[17] Guanya Shi, Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, Fabio Ramos, Ani-
mashree Anandkumar, and Yuke Zhu. Fast uncertainty quantification for deep object
pose estimation. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 5200–5207. IEEE, 2021.

[18] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views. In Proceedings
of the IEEE international conference on computer vision, pages 2686–2694, 2015.

[19] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, and
Rudolph Triebel. Implicit 3d orientation learning for 6d object detection from rgb
images. In Proceedings of the european conference on computer vision (ECCV), pages
699–715, 2018.



12 IVERSEN, HAUGAARD, BUCH: KI-PODE: KEYPOINT-BASED IMPL. POSE DIST. EST.

[20] Naoto Usuyama and Karanbir Chahal. pytorch-unet, github repository, Commit:
2020/08/21. URL https://github.com/usuyama/pytorch-unet.

[21] Anna Yershova, Swati Jain, Steven M Lavalle, and Julie C Mitchell. Generating uni-
form incremental grids on so (3) using the hopf fibration. The International journal of
robotics research, 29(7):801–812, 2010.

https://github.com/usuyama/pytorch-unet

