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1. Motivation
Pose estimation is the task of recovering an object’s 3D rotation and 3D translation. Prior work has primarily been concerned with the estimation of
a single best estimate. However, object poses are often ambiguous e.g. due to symmetry or occlusion. Since pose ambiguity cannot be expressed by
a single pose estimate, we estimate an entire probability distribution over object poses. As our primary concern was reliability, our method provides
distribution estimates which are expressive, conservative, and interpretable.
Expressive: We express the pose distribution using an implicit formulation since this allows our method to model distributions of arbitrary complexity.
Conservative: Estimates must be conservative since overconfident estimates can lead to false positives, resulting in an unreliable system.
Interpretable: Since our method is trained on synthetic data, it is valuable to have interpretable estimates, to aid in identifying if the sim-to-real
domain transfer is successful.

2. Method
Pose from keypoints
The probability distribution over
the pose θ can be expressed in
terms of a joint distribution over
projected keypoints kθ. Since the
projected keypoints uniquely define
a pose, it can be derived that:

p(θ|I) =
∫

p(θ|k, I)p(k|I)dk

= p(kθ|I)

k 00

Joint to marginals
The joint keypoint distribution is
approximated from the marginal
distributions, using the assumption
of strong correlation (p(ki, kj) =
p(ki)). This approximation is con-
servative since error introduced by
the approximation will overesti-
mate regions of low probability:

p(kθ|I) ≈ C N

√√√√ N∏
i=1

p(kθ,i|I)

Heatmap estimation
The marginal distributions, re-
ferred to as a heatmap, are es-
timated using a U-Net[1]. The
problem is formulated as spatial
classification and the network
is trained using cross-entropy loss
with the target distributions being
isotropic Gaussians.

L = −
N∑

i=1
N (ki, σ) log p̂(ki|I)

Target Model

Normalization
SO(3) is sampled in an equivol-
umetric grid using the Healpix-
based method in [2]. The un-
normalized likelihood is estimated
for the M samples, interpreted as
probability, and normalized such
that the normalized likelihood can
be computed as:

p̂(θi|I) ≈ P̂(θi|I)/(π2/M)

3. Results
Our method has been applied to orientation estimation, so it can be compared to existing works. The
figure shows our method applied to three objects. With 5 HEALPix recursions (1.8 million samples)
the computation time was ∼125ms. The mean log-likelihood of the ground truth pose is used as
a metric for comparison. Our method achieves state-of-the-art results on the YCB-V dataset and
modest results on the T-LESS dataset. Furthermore, our method performs reliably on all objects.
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YCB-V
Summary of Evaluation in [3]

I II III IV Ki-Pode (ours)
master chef can -0.78 -1.66 2.32 0.09 4.36
cracker box 4.03 3.75 -0.09 3.71 6.05
sugar box 3.77 5.94 2.62 4.20 6.47
tomato soup can 0.90 2.02 2.52 3.99 5.16
mustard bottle 3.85 4.61 3.02 4.81 5.45
tuna fish can -3.12 -0.20 2.64 1.23 5.10
pudding box 2.18 2.64 3.13 4.54 4.91
gelatin box 4.65 6.25 3.53 5.73 6.35
potted meat can 1.18 3.28 1.60 3.06 3.11
banana 2.58 0.58 2.27 3.70 4.80
pitcher base 3.34 4.68 2.35 4.88 5.39
bleach cleanser 3.91 4.70 2.29 3.38 4.02
bowl 1.37 -2.77 -1.21 -9.62 -1.50
mug 3.73 2.50 2.75 4.72 4.62
power drill 4.31 5.92 2.43 4.17 6.14
wood block 2.64 -2.09 -0.51 4.49 -1.76
scissors 3.74 0.51 0.66 1.63 5.49
large marker -7.59 -0.29 1.02 -8.13 3.94
large clamp -5.64 -6.67 -1.63 -3.54 3.07
extra large clamp -5.20 -2.92 0.19 -5.03 2.25
foam brick -0.26 -2.28 1.70 -12.0 2.44
All 0.86 1.71 1.74 1.43 4.09

Results I - IV published by Okorn et al. [3]

T-LESS
Deng1 5.3
Gilitschenski1 6.9
Prokudin1 8.8
IPDF1 9.8
Ki-Pode (ours) 3.3

1Results published by Murphy et al. [4]
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4. Conclusion
We have presented a novel pose distribution esti-
mation method, which provides estimates that:

• rely on conservative approximations to en-
sure reliability

• are highly expressive due to being formu-
lated implicitly

• have high interpretability due to the inter-
mediary keypoint representation
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