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Abstract

The practical value of existing supervised sketch-based image retrieval (SBIR) algo-
rithms is largely limited by the requirement for intensive data collection and labeling. In
this paper, we present the first attempt at unsupervised SBIR to remove the labeling cost
(both category annotations and sketch-photo pairings) that is conventionally needed for
training. Existing single-domain unsupervised representation learning methods perform
poorly in this application, due to the unique cross-domain (sketch and photo) nature of
the problem. We therefore introduce a novel framework that simultaneously performs
sketch-photo domain alignment and semantic-aware representation learning. Techni-
cally this is underpinned by introducing joint distribution optimal transport (JDOT) to
align data from different domains, which we extend with trainable cluster prototypes
and feature memory banks to further improve scalability and efficacy. Extensive experi-
ments show that our framework achieves excellent performance in the new unsupervised
setting, and performs comparably to existing zero-shot SBIR methods.

1 Introduction

Sketches efficiently convey the shape, pose and fine-grained details of objects, and thus
are particularly valuable in serving as queries to conduct retrieval of photos, i.e., sketch-
based image retrieval [32, 41] (SBIR). SBIR has been increasingly well studied, leading to
continual improvements in retrieval performance [1, 34]. However state-of-the-art methods
generally bridge the sketch-photo domain gap through supervised learning using sketch-
photo pairs and class annotation [32, 41]. This supervised learning paradigm imposes a
severe bottleneck on the feasibility of SBIR in practice. One main research direction on
reducing annotation cost thus far has been zero-shot (category generalized) SBIR [11, 25,
37], where labeled data is no longer necessitated for unseen categories, yet the problem
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Figure 1: Illustration of unsupervised SBIR where no class label or pairing information is
available during training.

still requires availability of all category labels and specific pairing annotations for the seen
categories. Furthermore, [29] turns images into edge maps to directly mitigate the domain
gap, but automatically generated pairs from 3D models are still prerequisites to facilitate
effective SBIR.
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Figure 2: Comparison between batch-wise DeepJDOT [9] and our PM-JDOT. Shapes repre-
sent samples of different classes. There are five classes in total for demonstration purposes.
(a) In batch-wise DeepJDOT, a single batch only contains samples from a subset of classes,
so correspondence is necessarily inaccurate (mismatched shapes/categories linked) and poor
alignment is learned. (b) In our PM-JDOT, (i) correspondence is mediated by learned pro-
totypes (blue) for all classes, which enables accurate and efficient computation compactly
summarizing the whole distribution; (ii) use of a memory bank allows larger sample size
with more unique categories than a single batch, increasing the chance that accurate corre-
spondence can be discovered. Note that hard pairwise correspondence is shown for ease of
visualization, but actual OT correspondence computation is soft many-many.

In this paper we go to the extreme in addressing the annotation bottleneck, and study
for the first time the problem of unsupervised category-level SBIR, where we work under
the stringent assumption of (i) no sketch-photo pairing, and (ii) no category annotations
(as illustrated in Figure 1) to retrieve photos of the same category as input sketch. We
are largely inspired by the recent rapid progress in unsupervised representation learning for
photo recognition [5, 6]. However these methods are unsuited to SBIR for the key reason that
they are designed for single-domain (photo) representation learning, while SBIR involves
cross-domain data with a mixture of realistic photos and abstract/iconic sketches. Successful
category-level SBIR has thus far relied on sketch-photo pairings and category annotations
to drive explicit sketch-photo domain alignment and class-discriminative feature learning
prior to retrieval [12, 24, 25, 32, 41]. The key question for us is how such alignment and
representation learning can be induced just by working with raw unpaired and unannotated
photos and sketches.

At a high-level our solution is based on alternating optimization between: (i) computing
a soft (many-to-many) correspondence between sketch and photo domains; and (ii) learning
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a representation that aligns sketch and photo features under the soft correspondence, and is
also semantically meaningful. Our framework is significantly more performant and resis-
tant to local minima compared to hard noisy pairing methods in other applications [15, 44]
due to soft correspondence prediction; and a multi-task representation learning objective
that synergistically combines cross-domain alignment and in-domain self-supervision for
domain-agnostic and semantic-aware feature learning.

In more detail, we first introduce a novel cluster Prototype and feature Memory bank-
enhanced Joint Distribution Optimal Transport (PM-JDOT) algorithm for accurate soft cross-
domain correspondence estimation. The vanilla JDOT learns to predict cross-domain corre-
spondence using distribution-level information by OT [36]. However, the application of
vanilla JDOT in CNNs [9] suffers from an inability to simultaneously provide efficiency and
accuracy: OT correspondence is either inaccurate if computed at minibatch level (e.g., a
given sketch+photo minibatch likely contains a disjoint set of categories, and thus cannot be
correctly aligned, as illustrated in Figure 2(a)); or intractable if computed at dataset level due
to O(N?) cost. We elegantly solve both of these problems by computing OT between clus-
ter prototypes and instances in feature memory bank, which provide a sparse representation
of the full dataset; and extending JDOT with features in memory bank to aggregate infor-
mation across batches (Figure 2(b)). To capture domain-invariant yet class-discriminative
features for effective SBIR, we devise an alignment loss to minimize the cross-domain fea-
ture discrepancy according to the predicted soft sketch-photo correspondence, and employ
a self-supervised loss that helps encode discriminative semantic features by preserving the
consistency in cluster assignments between different variants of the same input.

Our main contributions are summarized as follows: (i) We provide the first study of un-
supervised SBIR. (ii) We propose a novel unsupervised learning algorithm for multi-domain
data that jointly performs cross-domain alignment and semantic-aware feature encoding. (iii)
The cluster prototypes and feature memory banks introduced by our PM-JDOT algorithm al-
leviates the limits of existing JDOT, enabling effective yet tractable distribution alignment.
(iv) Extensive experiments on Sketchy-Extended and TUBerlin-Extended datasets illustrate
the promise of our framework in both unsupervised and zero-shot SBIR settings.

2 Related Work

Sketch-based image retrieval SBIR methods can be classified into two groups according
to granularity: Category-level SBIR aims to rank photos so that those with the same seman-
tic class as the input sketch appear first. Fine-grained SBIR targets on retrieving the specific
photo corresponding to the query instance. Traditional supervised SBIR algorithms learn
class-discriminative feature using classification loss [32] and remedy the domain gap with
sketch-photo paired data [2, 3, 34, 41]. On account of the data shortage that results from
labour-intensive sketch-photo paired dataset collection and annotation, zero-shot SBIR in-
tends to test on novel categories that are unseen during training. Representative approaches
use adversarial training strategy [12, 24] or triplet ranking loss [31, 40] to learn a common
feature space for both domains. Additional side information like word embeddings [11] may
also be exploited to preserve semantic information. Nevertheless, annotated training data is
still necessary in existing zero-shot SBIR approaches to perform effective training, and the
required cross-category generalization is still an active research question [25]. We are there-
fore motivated to study unsupervised category-level SBIR that does not rely on sketch-photo
annotations.
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Unsupervised deep learning Unsupervised deep learning methods have recently made
strong progress in representation learning that ultimately diminishes the demand for data
annotation. Most contemporary unsupervised learning methods can be classified into four
categories according to the learning objective: (i) Deep clustering approaches are designed
to model the feature space via data grouping where the pseudo class label can be assigned
with the help of clustering algorithm [4, 16]. (ii) Instance discrimination [38] treats every
single sample as a unique class, which can be beneficial to capture discriminative features
of individual instance. (iii) Self-supervised learning algorithms learn through solving dif-
ferent pretext tasks including image colorization [43], image super-resolution [21], image
in-painting [27], solving jigsaw puzzle [23], rotation prediction [17]. (iv) Contrastive learn-
ing aims to maximize agreement between different augmentations of the same input in fea-
ture space [6] or label space [5]. However, these methods are designed for single domain
representation learning, and perform poorly if applied directly to multi-domain data. A few
self-supervised methods have been defined for multi-domain data [35], but these normally
assume that cross-domain pairing is the ‘free’ pre-text task label, which is exactly the an-
notation we want to avoid. In contrast, our model performs unsupervised learning in each
domain, while simultaneously aligning the domains through JDOT.

Joint distribution optimal transport  Optimal transport (OT) [36] is a mathematical the-
ory that enables distance measurement between distributions by way of searching for the
optimal transportation plan to match samples from both distributions. OT has been applied
in domain adaptation [7, 28, 39] to learn a transportation plan between source and target
domains, followed by training a classifier for target domain with transported source domain
data and the corresponding category annotation. To avoid this two-step process (feature
transformation and classification model training), JDOT [8] aligns the feature-label joint dis-
tribution and projects input samples from both domains onto a common feature space where
a classifier can be shared. DeepJDOT [9] extends JDOT to deep learning and facilitates
training on large scale datasets by introducing a stochastic approximation via batch-wise
OT. However, we observe that data in a single batch is not informative enough to repre-
sent the whole data distribution, which limits the efficacy of OT in DeepJDOT. To this end,
we introduce PM-JDOT which employs prototypes and feature memory banks to enhance
representation of each distribution for optimizing OT-based cross-domain alignment.

3 Methodology

In category-level SBIR, the goal is to train an effective CNN fp : [ — X to project input im-
agery I from both sketch and photo domains into a shared embedding space, where features
x facilitate cross-domain instance similarity measurement. Given a query sketch I°, a ranked
list of photos will be generated according to their feature space distance to the query with
the aim of ranking photos of the same category on top of the list. In the proposed unsu-

pervised setting, we only have access to a set of training sketches Z* = {I }f‘i , and photos

N
Ir = {If } that contain the same categories, but without category or sketch-photo pairing
j=1

annotations — thus raising the challenge of how to learn a representation suitable for retrieval.

To solve this problem, our method integrates two objectives: (i) cross-domain correspon-
dence estimation with PM-JDOT, which employs the aggregated data in trainable cluster pro-
totypes and feature memory banks in support of accurate and scalable discrepancy measure-
ment. and (ii) unsupervised feature representation learning that encodes domain-agnostic
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Figure 3: Schematic of our proposed framework.

and semantic-discriminative features from visual input. Figures 3 briefly summarizes our
unsupervised SBIR framework.

3.1 Cross-domain correspondence estimation

From JDOT to PM-JDOT  Given only unpaired and unlabeled photos and sketches, we
introduce a machinery to estimate the soft sketch-photo correspondence in an unsupervised
way to support the cross-domain alignment. We introduce joint distribution optimal trans-
port (JDOT) to match samples from the sketch and photo domains. Crucially, we extend it
to improve both alignment accuracy and efficiency by redefining the problem in terms of OT
between a set of learnable prototypes and feature memory banks — PM-JDOT. Conventional

N
JDOT is able to align all features {x} }fi , from sketch domain and {xﬁ7 } ~ from photo

domain via computing the optimal transport plan between them. To make this quadratic
computation scale to neural network training, JDOT is applied between two randomly se-
lected batches [9]. However, an individual sketch/photo batch is a weak representation for
the overall data distribution of one domain, leading to poor correspondence as illustrated in
Figure 2.

Thus we first exploit K trainable cluster prototypes U = [uj,up,...,ug| as a stronger
proxy to learn a better alignment. Specifically, instead of matching sketch and photo batches
in isolation, we estimate the correspondence between sketch/photo batches and the proto-
types which compactly represent the whole dataset with a small number of elements. To
further alleviate the limitation caused by the impoverished domain representation, i.e., a
small batch of samples, we introduce feature memory banks of size E for sketch M*® =
[x},x5,...,x%;| and photo M? = [x}',x%,....x7] as richer domain representations which aug-
ment current batch with samples in previous batches. The update strategy of memory bank is
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FIFO, i.e., removing the oldest batch and putting the current batch on the top of the container.
Correspondence search In PM-JDOT, the correspondence I' is found from the set of
transportation plans IT between prototypes and one feature memory bank by minimizing:

mmZZF,jCz] AH(T), where
l lj (1)
1
I[I=<T eR*EM :—1 IMg=-1
{ e RY*F Mg KK K=FlE

Here, H(-) is an entropy regularization term weighted by A. K and E are the number of pro-
totypes and the size of feature memory bank respectively The constraint for transportation
plans IT ensures each prototype can be selected £ times on average [5]. C € RK*E is the
matrix of cross-domain pairwise costs. Spe01ﬁca11y, the cost C(i, j) of aligning i prototype
and j sample in memory bank is calculated by:

C(i, j) = ady(w;,x;) + Bdi(vi,y;), where

(k) CXp(X;uk/'L') )
Yi =%

Y exp(x; uy,/1)

m=1

Here, cosine distance d is used to measure the feature-wise similarity between prototype
vector u; and feature x; extracted with fy. d; is applied label-wise to evaluate the difference
between one-hot label v; for i’ prototype and cluster probability y; for 7" image in the mem-
ory bank. v; is generated automatically according to the index i, e.g., vi = [0, 1,0,0,...,0]. @
and f are scalar hyperparameters that control the contributions of feature and label distance
measurements. PM-JDOT is executed twice for prototype-sketch and prototype-photo corre-
spondence, producing optimal correspondence I* and I respectively. Feature extractor fg
and prototypes U are fixed in this process.

3.2 Unsupervised representation learning

The algorithm so far in Section 3.1 learns the correspondence between prototypes and sam-
ples in both domains, but the feature extractor is not optimized. Thus, in this section, we
further illustrate the second part of our alternating optimization: unsupervised representation
learning to train fy to extract features that are domain-invariant (aligned across domains), yet
sensitive to semantic category.

Cross-domain alignment In order to align features from sketch and photo domains, we
leverage the first A columns in I and I'7, which contain the mapping between trainable pro-
totypes and current sketch/photo batch of size A. Then the feature extractor fg and trainable
prototypes U are updated by minimizing feature and label discrepancy between correspond-
ing prototypes and samples in the batch according to the optimal correspondences:

Ly=L,+L?

szlj Otdf u;, ])+Bd1(vl,y])))
Ly 3)

K A
ZZ Oﬂdfll,, ) ,Bdl(vzay )))

i=1j=1
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Semantic-aware feature learning To learn a semantically meaningful representation (i.e.,
ensure samples from same category are similar in feature space) from unannotated pixel-level
input images, inspired by SWAV [5], we train feature extractor fy by contrasting the cluster
assignments for different variants of the same image. The training objective is to minimize
the semantic representation loss:

LSE = Lf'e +L€e
= (0(¥},73) 0¥, 7)) + (0¥ 20) +0(¥h, 7))

where £ is the cross-entropy loss. Taking sketch domain for illustration, y} and zj are pre-
dicted cluster probability and cluster assignment of I; respectively. {yfl ,Z‘;l} and {yf2,z~l?'2}
correspond to two transformed variants I3 = 71(f;) and I}, = T»(I{) of the same original
sketch I}, where 71 and 7> are randomly sampled from the set 7 of image transformations
including rescaling, flipping, efc. Through swapped prediction, i.e., pairing y;; with z;, and
y} with z}; in cross-entropy loss ¢, the network learns to predict consistent cluster probabili-
ties for different augmentations of identical image, which assists semantically-aware feature
learning. y} can be measured in the same way as Equation 2. And we compute cluster
assignment zf, online at each iteration as follow [5]:

“4)

maxTr(Z'U' Q) +eH(Z), where
Zcz

Z = ZeRKxB\ZlgzilK ZT1K:113 ©
+ K B

Where Q is a feature queue of size B which is initialized with image features and updated
continuously in a FIFO manner during training. If the training batch size is A, the current
batch features define the top A elements in Q. Z are cluster assignments corresponding to
the B samples in Q. U represents cluster prototypes. H(-) is an entropy penalty with weight
€. Only the cluster assignments for current batch, i.e., top A elements in Z, are used for L.
Summary The overall learning objective is to train an effective feature extractor fy with-
out class or instance-paired annotation. We achieve this by minimizing alignment loss L,
and the semantic representation loss Lg, as:

argmin VL, + uL
5.U a se (6)
where v and p are respective loss weights. Algorithm 1 in Supplementary material summa-
rizes the training algorithm followed in this work.

4 Experiments

4.1 Datasets and Settings

Datasets We evaluate our algorithm on two datasets: (i) Sketchy-Extended [22] contains
75,471 free-hand sketches and 12,500 photos spanning over 125 categories provided by [32]
and another 60,502 photos collected in [22] from ImageNet [10]. (ii) TUBerlin-Extended
[42] offers 20,000 sketches [13] evenly distributed on 250 classes and photos of same cate-
gories collected using Google image search.

Implementation details We use ResNet-50 [19] as feature extractor fy, followed by an
additional L2 normalization layer to transform visual input into 128-d feature embeddings.
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Table 1: Unsupervised SBIR results on Sketchy-Extended and TUBerlin-Extended dataset

Method Sketchy-Extended dataset TUBerlin-Extended dataset
Prec@200(%) | mAP@200 (%) | mAP (%) | Prec@200(%) | mAP@200 (%) | mAP (%)
RotNet [17] 2.26 4.89 1.54 1.53 3.61 0.77
ID [38] 3.41 5.26 2.45 2.66 5.35 1.35
CDS [20] 2.37 3.58 1.88 2.64 4.69 1.63
GAN [18] 245 4.66 1.43 1.56 3.45 0.69
SWAV [5] 10.87 12.51 10.15 3.36 5.81 2.89
DSM [29] 10.07 17.92 4.28 7.05 13.00 2.61
SWAV [5] + CycleGAN [45] 4.15 5.39 4.28 2.67 3.50 2.06
SWAV [5] + GAN [18] 22.96 25.48 18.82 10.92 13.46 8.43
Ours 33.64 36.31 28.17 14.78 18.66 9.93

fo is first initialized with parameters pre-trained with photos in ImageNet dataset [10] by
applying SWAV [5]. As SwAV [5] is an unsupervised learning framework, it is guaranteed
that no labeled data is used in the pre-training stage. All training photo features extracted
with the pre-trained fy are grouped into K clusters using K-means. The K cluster centroids
are then employed to initialize prototypes U. The number of prototypes K is set to the
actual number of training categories, i.e., 125 for Sketchy-Extended and 250 for TUBerlin-
Extended in unsupervised SBIR. The sum of elements related to current batch in I* and
[P are normalized to 1 in Equation 3 for all experiments. Both the feature extractor and
prototypes are trained with learning rate initialized with 0.01 and divided by 2 after each 10
epochs. We use SGD optimizer and set momentum factor and weight decay value to 0.9 and
le-4 respectively. Weights for L, and L, are 1 and 10. And temperature hyperparameter T
is set to 0.1. Our framework is implemented with Pytorch [26] and optimal transportation
plans are computed by the POT toolbox [14].

Evaluation metrics  Cross-domain retrieval is performed by computing cosine distance
between sketch and photo feature vectors and generating a ranked list of gallery photos. We
evaluate the retrieval performance by calculating the precision and mean average precision
among top 200 retrieved photos denoted by Prec@200 and mAP@200 as well as the mean
average precision over the whole dataset (mAP). Photos belonging to the same category as
the query sketch are considered as correct retrievals.

4.2 Results
4.2.1 Unsupervised SBIR

Settings 50 and 10 sketches for each class are randomly selected as query sets for Sketchy-
Extended and TUBerlin-Extended dataset respectively for testing. The remaining sketches
and photos are used during the training process by following the same setting in [22]. No cat-
egory labels or sketch-photo pairings are available during training. Each mini-batch contains
128 96 x 96 pixel sketches and photos.

Results  Quantitative retrieval results on Sketchy-Extended and TUBerlin-Extended are
shown in Table 1. From the results, we make the following observations: (i) Unsupervised
feature representation learning algorithms [5, 17, 38] originally designed for single-domain
perform poorly when directly applied to cross-domain task like SBIR. SWAV [5] is the best
among these three methods. (ii) CDS [20] cannot cope with the large domain gap between
sketch and photo and results in unsatisfactory performance. (iii) From the comparison be-
tween GAN [18] and SWAV+GAN, we can see that additional guidance targeting on preserv-
ing semantic-discriminative feature is essential in category-level SBIR. (iv) CycleGAN fails
to generate high-quality color images from sketch in large-scaled multi-class image trans-
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Sketchy-Extended dataset

TUBerlin-Extended dataset
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Figure 4: TopS8 retrieval results for unsupervised SBIR. Row 1&5: Retrieval results of SwAV
[5]; Row 2&6: Retrieval results of DSM [29]; Row 3&7: Retrieval results of SWAV [5] +
GAN [18]; Row 4&8: Retrieval results of our framework.
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Figure 5: t-SNE visualization of 10 categories from Sketchy-Extended dataset. (a):
feature visualization of SWAV [5]; (b): Photo feature visualization of SWAV [5]; (c):
feature visualization of our method; (d) Photo feature visualization for our method.

lation. In contrast, it degrades the semantic information in the original sketch and leads to
worse retrieval results compared with SWAV only. (v) Our proposed framework achieves the
best retrieval accuracy compared with all these baseline methods trained without external
labeled data. Quantitative retrieval results and feature visualizations can be found in Figure
4 and Figure 5.

4.2.2 Zero-shot SBIR

Settings We use the same data split as [11]: 104 and 21 categories are selected for train-
ing and testing respectively for Sketchy-Extended dataset. 30 classes are randomly chosen
from TUBerlin-Extended dataset for testing and the rest are used for training. Following the
default setting in [11], we set each mini-batch to 20 224 x 224 sketches and photos.

Results  Retrieval performance in Table 2 shows that even without involving human pair-
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Table 2: Zero-shot SBIR results on Sketchy-Extended and TUBerlin-Extended dataset. (*)“
represents for retrieval results on 25 test categories following the setting proposed in [30].
All methods except ours use instance-wise annotation in the train set.

Method | Supervision Sketchy-Extended dataset TUBerlin-Extended dataset
Prec@200(%) | mAP@200 (%) | mAP (%) | Prec@200(%) | mAP@200 (%) | mAP (%)

ZSIH [33] v - - 25.90° - - 23.40
CVAE [40] v 33.30 22.50 19.59 0.30 0.90 0.50

SAN [24] v 32.20 23.60 - 21.80 14.10 -
SEM-PCYC [12] v - - 34.90¢ - - 29.70
Doodle [11] v 37.04 46.06 36.91 12.08 15.68 10.94
Ours X 38.44 44.09 34.68 28.36 31.53 2291

Table 3: Ablation study on our model components. Unsupervised SBIR on Sketchy-
Extended and TUBerlin-Extended dataset.

Method | JDOT  Proto Mem. Sketchy-Extended dataset TUBerlin-Extended dataset
" bank ["Prec@200(%) | mAP@200 (%) | mAP (%) | Prec@200(%) | mAP@200 (%) | mAP (%)
vl X X X 10.87 12.51 10.15 3.36 5.81 2.89
v2 v X X 21.07 23.19 18.53 7.01 9.96 5.05
v3 v v X 25.60 28.62 20.98 9.01 12.26 5.62
v4 v X v 24.83 27.67 20.78 11.71 15.66 7.53
v5 v v 4 33.64 36.31 28.17 14.78 18.66 9.93

wise or category-level annotations during training, our framework still performs compara-
bly with existing zero-shot SBIR algorithms that use such annotations during training. Our
aligned semantically rich and domain-invariant representation learned on unlabeled training
data can generalize directly to unseen classes not used for training.

4.2.3 Ablation Study

We analyze the efficacy of different components in our unsupervised SBIR framework in Ta-
ble 3: (i) Compared with vanilla SWAV (v1), JDOT using batch-wise OT (v2) for alignment
as in [9] already benefits cross-domain matching in both datasets; (ii) In v3, the transporta-
tion map is measured between prototypes and single batch of instances. The result shows
that prototypes offers a better approximation for real data distribution and improves the OT-
based alignment; (iii) Making use of additional data for memory bank-wise OT (v4) is also
beneficial for feature alignment; and (iv) Our full model (v5), which takes advantages of both
prototypes and memory banks, provides best alignment and representation learning strategy.
Further analysis can be found in the Supplementary Material.

5 Conclusion

This paper presents the first attempt at unsupervised SBIR, which is a more challenging
learning problem, but more practically valuable due to addressing the data annotation bot-
tleneck. To facilitate cross-domain feature representation learning with no labeled data, our
proposed framework performs cross-domain correspondence estimation and unsupervised
representation learning alternatively. Alignment is further achieved accurately and scalably
by our PM-JDOT. The results show that our unsupervised framework already provides us-
able performance on par with contemporary zero-shot SBIR methods, but without requiring
any instance-wise category or pairing annotation.
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